
Pentera Labs™ Research Series

Flying Under
the EDR Radar
Orchestrated Windows System Call

Invocation Without Detection

E l i r a n N i s s a n

Pentera Labs™ Research Series

Abstract and introduction

Windows architecture overview

Common antivirus defense vectors and their open doors

 The culprit - the injection

 Signature scan

 Heuristic static analysis

 Dynamic analysis

 Heuristic behavioral analysis

Where endpoint detection and response (EDR) works

	 Callbacks	and	notifications
 Hooks

The path to evading the EDR

 Evade a single hook

 The reality of multiple hooks

 System calls

Implementation guide

 The system call

Implementing aa (automatic autonomous) syscall engine

 SSDT index

 Call gate

 Calling convention

 One macro to rule them all

 Hooking the injection

Recommendations and takeaways

 Recommendations for EDR system developers

 Recommendations for security executives

 Conclusion

Appendix a: Windows components and terminology

 Portable executabl

 DLL (dynamic link libraries)

 Import address table (IAT)

 Windows API

 Import address table (IAT) hooking

 Inline hooking

 Assembly and assembly registers

References

About the author

About Pentera

03

04

05

05

05

06

08

09

09

09

10

11

11

12

12

12

12

13

13

15

17

19

20

21

21

23

24

25

25

25

25

26

26

27

27

28

29

29

Table of contents

F l y i n g U n d e r t h e E D R R a d a r2

On the surface, Endpoint Detection and Response (EDR) methods, including behavioral analysis,

seem to promise solid endpoint visibility and monitoring capabilities in real time. However, there

are still advanced methods that exist today that allow malware to evade detection, even by next

generation EDR technologies. In this article, we will show some of the attack paths that remain

open in a wide range of Windows operating systems, from XP through Windows 10 and parallel

server versions.

We will also discuss previously known User Mode attack vectors, and will demonstrate how EDR

techniques provide protection against those vectors and how they can be bypassed. To do this, we

will	first	review	some	of	the	more	common	defense	and	evasion	techniques	known	today,	and	then	
deep dive into how it is possible to evade EDR mechanisms' detection capabilities.

We'll show how we ultimately achieved this evasion by developing Autonomous System Calls as

a mechanism by which we automated these calls into meaningful sequences. With this set of

sequences, we ultimately accessed EDR-protected systems from the lowest of the User Mode

layers, undetected, thus enabling direct communication with the Kernel. Using this method, an

attacker	could	do	the	same,	leading	to	significant	damage,	loss	of	data,	privacy	breaches	
and more.

With this evidence in hand, we’ll make recommendations on how the defence community can test,

detect and protect Windows systems from advanced malware on multiple Windows systems.

The ultimate aim of our research is to share our knowledge with security researchers, CISOs, IT

administrators and other to supplement their efforts to protect and secure vital data.

As attacks continue to evolve, it is even more important for security teams to consistently test

their security controls by proactively challenging them against real-world attack vectors to

understand their risk in real-time and to be prepared for any scenario.

Abstract and Introduction

F l y i n g U n d e r t h e E D R R a d a r3

Pentera Labs™ Research Series

F l y i n g U n d e r t h e E D R R a d a r4

Before	we	describe	the	methods	and	results	of	our	research,	we	must	first	understand	
the Windows Operating System (OS) architecture, as the antiviruses, threats and exploits

demonstrated in this paper target the full range of Windows systems, from XP through Windows

10, for x86, x64 and WOW64.

The Windows OS is divided into two major layers: the User Mode and the Kernel Mode.

User Mode is the lesser privileged of the two layers, responsible for user processes, such as

application programs created by the user to execute a certain task, and for services serving the

user like the Logon service, or Windows Defender. Each process has its own memory address

space in the User Mode, and each address space is mapped to Win32 DLLs that provide OS

functionality to that process. Using these DLLs, the processes invoke Windows APIs, and the

APIs enable the processes to request the privileged Kernel Mode to perform more complex tasks.

Kernel	Mode	is	the	privileged	layer	of	the	operating	system	and	is	responsible	for	tasks	such	as	file	
creation or socket management.

The Kernel runs and

manages all parts of

the OS (including the

hardware itself). It

consists of a single

address space in which

the drivers run. Each

driver is highly privileged,

and can manage devices

and access OS core

objects.

As we describe the

research stages and our

findings,	we’ll	go	into	
more detail about the

different parts of the

Windows architecture

that bot EDRs and

attackers manipulate.

Windows Architecture Overview

Pentera Labs™ Research Series

Antiviruses and EDRs employ various mechanisms designed to detect malicious and unwanted

activity in the computer system; As attackers become more advanced, so do antivirus

mechanisms.

To	understand	how	we	were	able	to	evade	EDR	mechanisms,	it’s	important	to	first	take	a	look	at	
the other available defense techniques and the different vectors against which they protect.

As many readers may already know, an injection is the act of loading code to a different (target)

process than that owned by the injector, and then running that injected code from the target

process. This way, injections are a means to achieve stealth by loading code directly into the

memory. Injections are very basic stepping stones for an attacker targetting an endpoint.

The rest of this section aims to review some of the main defense mechanisms used today,

including signature scanning, static and dynamic analyses, whitelisting, and behavioral analysis.

We challenge each mechanism against a PE (Portable Executable - further explained in Appendix

A) binary produced from the following basic shellcode injector code sample.

Signature	scanning	is	the	method	by	which	known	malicious	files	are	hashed	or	mapped	to	a	fix-
length	code	associated	with	them	so	that	those	files	can	be	uniquely	identified.	The	signatures	
can	be	produced	from	the	entire	file,	or	sections	of	it.	These	signatures	are	stored	in	the	antivirus	
databases,	and	used	for	comparison	when	suspicious	activity	occurs,	usually	when	a	new	file	
is	introduced	into	the	system.	When	such	a	file	is	identified,	it	is	compared	to	the	signature	
database.

Common Antivirus Defense Vectors and Their Open Doors

The culprit - the injection

Signature Scan

F l y i n g U n d e r t h e E D R R a d a r5

Pentera Labs™ Research Series

If a signature is matched, the suspicious activity connected to the signature is marked as

malicious and blocked.

Signatures, albeit one of the older methods implemented, remain important in protecting any

system because of their effectiveness in uniquely identifying data, and easily detecting

well-known threats.

At the same time, signature scanning has major drawbacks:

Referring	back	to	our	injection	example	-	if	we	hash	the	contents	of	the	file,	the	result	is	a	unique	
signature.

By simply changing the print method and using a random key to encrypt and decrypt our shellcode

in runtime, we successfully avoid signature detection.

F l y i n g U n d e r t h e E D R R a d a r6

Clearly, signature scanning alone cannot be entrusted to protect your system.

Pentera Labs™ Research Series

The	signature,	or	hash,	of	the	tested	file	can	be	easily	changed.	Simple	acts	such	as	encryption,	
packing or encoding, or even a random addition of benign code, changes section values,

resulting	in	a	hash	change.	The	simple	act	of	recompiling	a	file	also	changes	metadata	values	
such	as	the	compilation	timestamp,	also	changing	the	hash	of	the	file.
Determining the right point at which to scan for signatures is not clear. Should signatures be

scanned	on	each	new	file	introduced	to	the	system?	When	each	process	starts?	Each	module	
load?	There	is	no	single	correct	answer,	as	there	are	many	ways	to	create	and	execute	new	data.
It goes without saying that signature scanning won’t detect newly developed malware.

•

•

•

Static	analysis	consists	of	examining	static	attributes	of	the	executable	file	prior	to	its	run	
to understand its runtime intentions. Some of these attributes might include the PE header

metadata, imports from the .idata (the Import Address Table), strings from the .rsrc section, and

even	code	flow	analysis	from	the	code	sections.

This	allows	the	antivirus	to	define	a	certain	set	of	rules,	and	then	to	catch	new	threats	according	to	
those rules - a more heuristic approach than signature scans. During static analysis, every single

file	introduced	into	the	system	is	analyzed	for	malicious	content.

Heuristic Static Analysis

Although this is a step in the right direction, static analysis also has major drawbacks:

F l y i n g U n d e r t h e E D R R a d a r7

In conclusion, in this example, by dynamically resolving our APIs and invoking them, we successfully ducked the EDR static analysis.

Pentera Labs™ Research Series

Like	signature	scanning,	it’s	not	clear	when	to	scan	suspicious	files.	Furthermore	some	static	
analyses can be more resource-hungry than a simple hash validation, and this can disturb the

normal OS runtime.

Static	analysis	scans	for	static	attributes	of	the	file,	but	many	attributes	might	be	overridden	
due to runtime manipulations. It goes without saying that signature scanning won’t detect newly

developed malware.

Dynamic API resolution - using LoadLibrary and GetProcAddress calls, one can dynamically

load DLLs to get API pointers without statically importing them. Doing so will hide our import

data	from	the	.idata	section.	For	those	who	wish	to	take	it	a	step	further,	we	can	evade	the	
GetProcAddress call, collecting DLL and API locations by traversing this data from the Window’s

PEB	(Process	Environment	Block)	-	using	the	FS	(File	segment)	register	pointer.
Packing, obfuscation and code encryption allow for hiding code and strings, revealing them only

during runtime - thus escaping static analysis.

Static analysis can produce a large amount of false positives. Let us refer back to our

injector sample. It relied on these APIs: OpenProcess, VirtualAllocEx, WriteProcessMemory,

CreateRemoteThread. With static scanning, the IA (Import Access Table) of our binary would be

scanned.	Finding	calls	to	these	APIs	will	be	marked	as	suspicious	and	an	alert	sent.

•

•

•

•

•

To avoid detection by Static Analysis, we invoke the API calls by dynamically resolving those calls

using the LoadLibrary and GetProcAddress API calls:

F l y i n g U n d e r t h e E D R R a d a r8

Pentera Labs™ Research Series

Also known as Sandboxing, dynamic analysis tests potentially malicious code in an isolated

environment to observe behavior during runtime and then create appropriate defense

mechanisms accordingly. As opposed to the other methods already described, sandboxing

enables the antivirus to understand the actual expected attack behavior, in great detail, thereby

enabling a deeper level of defense.

 To demonstrate a rather simple sandbox bypass, we can edit our injector code like so:

In	this	example,	prior	to	our	shellcode	execution,	we	sent	a	request	to	access	a	fictitious	URL.	
If we get an answer, we simply exit, as we expect an answer might only come from a sandbox

responder eager to emulate our malware’s C&C (Command and Control) channel. If no answer is

found, we may trust the environment and run our injection.

In conclusion, we understand that dynamic analysis isn’t a ‘silver bullet’ for countering malware

either; therefore, we have to dig deeper.

Dynamic Analysis

However this method has drawbacks of its own:

Dynamic analysis is time-consuming and resource-heavy, and won't produce a single answer as

to when is best to perform on the destined code.

Anti-Sandboxing \ Anti-Emulation techniques may undermine this approach. Using such

techniques, once a malware understands it’s running in a sandboxed environment, it won’t reveal

its true nature and course of action, tricking its observers. Some of these techniques might be:

• Expecting a fake answer from an API call, that a sandbox would return

• Accessing non existent resources and receiving an answer from the sandbox

• Convincing the sandbox to skip analysis by executing resource heavy actions

•

•

F l y i n g U n d e r t h e E D R R a d a r9

Pentera Labs™ Research Series

Also known as Sandboxing, dynamic analysis tests potentially malicious code in an isolated

environment to observe its behavior during runtime and then create appropriate defense

mechanisms accordingly. As opposed to the other methods already described, sandboxing

enables the antivirus to understand, in great detail, the actual expected attack behavior, thereby

enabling a deeper level of defense.

A callback function is any executable code that is passed as an argument to another block of code.

The	original	code	is	then	expected	to	notify	and	execute	the	callback	function	at	a	certain	predefined	
event. An example would be to get a callback for every print job that is submitted in the network.

Windows	operating	systems	offer	many	callback	and	notification	mechanisms	that	EDRs	will	
leverage,	among	them	are	Event	Tracing	for	Windows	(ETW),	Windows	Notification	Framework	
(WNF)	and	Kernel	callbacks.

The callback event is usually at a macro scale, allowing for system-wide monitoring on higher level

operations.	For	example,	a	Kernel	callback	is	used	by	Kernel	drivers	to	receive	notifications	from	
the entire OS (from User Space or Kernel Space) and act upon them.

Heuristic Behavioral Analysis

Callbacks And Notifications

Some useful Kernel callbacks for the EDR task might be:

PsSetCreateProcessNotifyRoutine - for process creation monitoring

PsSetCreateThreadNotifyRoutine - for thread creation monitoring

PsSetLoadImageNotifyRoutine - for library loading monitoring

CmRegisterCallbackEx - for registry access monitoring

•

•

•

•

Endpoint Detection and Response (EDR) solutions aim to provide real-time protection, relying

primarily on behavioral analysis.

For	the	EDR	to	examine	software	behavior	in	real-time	it	monitors	and	correlates	OS	events	on	
the	fly,	blocking	suspicious	acts	by	a	growing	set	of	heuristics.	The	Windows	EDR	uses	two	major	
techniques	to	achieve	this:	registering	to	Windows	callback	notifications	and	hooking	APIs.

Callbacks offer system-wide event monitoring at a macro scale (e.g. a process was created). Still,

what happens when an EDR wants to monitor lower scale operations, like memory allocation, that

don't	have	a	callback	event	linked	to	them?

Where Endpoint Detection and Response (EDR) Works

F l y i n g U n d e r t h e E D R R a d a r10

Pentera Labs™ Research Series

Hooks are the act of intercepting and augmenting a legitimate target functionality with additional

functionality. This results in activating the logic of the new functionality when the target is

invoked. Hooking Windows API will allow control over the hooked APIs.

For	a	detailed	explanation	about	API	hook	types	-	refer	to	Appendix	A

To	achieve	a	finer	scale	of	monitoring,	EDR	systems	deploy	User	Mode	hooks.	The	EDR	monitors	
each process creation using PsSetCreateProcessNotifyRoutine and on each new process created,

it hooks key API calls, redirecting them to its own validation code, prior to the API execution.

By doing so, an EDR could intercept and block suspicious API calls or call sequences, such as the

one we used in our initial code injector.

Both callbacks and hooks are necessary for EDRs to run. Callbacks provide a high level perspective

on system activity, and hooks enable the most granular scale of detail for the EDR to observe.

Hooks

API hooks can come in two modes:

Let's examine how an EDR will catch our sample code injector:

Kernel Mode hooks - achieve system-wide control and visibility, but are very complex and almost

impossible to perform due to mechanisms such as Kernel Patch Protection (KPP), known as

PatchGuard.

User Mode hooks - placed on User Mode DLLs in a process's address space, such hooks monitor

only the process they were set on.

OpenProcess

VirtualAllocEx

WriteProcessMemory

CreateRemoteThread

•

•

•

•

•

•

The EDR hooks the set of API our injector invokes. When the hooks are stepped on, the EDR

receives	notification	and	reports	behavioral	detection	of	injection.	Such	hooks	latch	onto	
operations such as:

A Kernel callback set on PsSetCreateProcessNotifyRoutine alerts the EDR for the new

remote thread created and with further inspection of the thread’s base address, such as

a private RWX (Read, Write, Execute) protected memory, the EDR marks the thread as

running an injection, and blocks it.

1.

2.

F l y i n g U n d e r t h e E D R R a d a r11

Pentera Labs™ Research Series

To evade the EDR’s detection - we need to

Avoid triggering callbacks the EDR is likely to check

Avoid stepping on the EDR hooks

•

•

The simplest way to evade a single hook is by not invoking the API that contains it. If we want to

evade the subsystem DLL hooks that were laid by the EDR on our injector’s APIs, we could invoke

these lower NTAPIs from NTDLL:

We	refer	specifically	to	two	new	allocation	APIs	(NtCreateSection	and	NtMapViewOfSection),	
which enable us to write shellcode to our own process and map it to the victim’s machine in a

stealthier approach1.	With	these	APIs	we	also	benefit	from	mapping	the	remote	shellcode	with	
PAGE_EXECUTE_WRITECOPY, which is a less obvious injection memory protection than RWX.

Evade A Single Hook

NtOpenProcess

NtCreateSection

NtMapViewOfSection

NtQueueApcThread

•

•

•

•

The callback that concerns us the most regarding our code injector is PsSetCreateProcess

NotifyRoutine, which monitors thread creation. To evade, we need to execute our injection

without creating a new thread. To avoid triggering a thread-creating event we can use an APC

(Asynchronous Procedure Calls). By using the API QueueUserAPC, we can attach our shellcode to run

asynchronously by an already existing thread. Once that is done, we are left with the task of evading

hooked	APIs.	To	avoid	stepping	on	hooks,	let’s	first	take	a	look	at	the	following	Windows	architecture	
diagram in which the ‘subtle’ hook signs represent the EDR hook locations.

The Path to Evading The EDR

1 https://ired.team/offensive-security/code-injection-process-injection/ntcreatesection+ntmapviewofsecti on-code-injection

https://en.wikipedia.org/wiki/Copy-on-write

file:https://ired.team/offensive-security/code-injection-process-injection/ntcreatesection-%0D%2Bntmapviewofsection-code-injection%20

F l y i n g U n d e r t h e E D R R a d a r12

Pentera Labs™ Research Series

The next challenge, as can be seen in the diagram, is placing hooks on both win32 DLLs, and on

the NTDLL itself. This means that every API invocation, whether common or lower NT, will grab the

EDR’s attention.

NTDLL is crucial for API invocation, as higher level APIs eventually call NTAPIs in NTDLL code. The

NTAPI task is to request the Kernel to perform the actual API in Kernel Mode and return its result.

This process of NTDLL requesting a service from the Kernel is called a System Call. NTAPIs are

the lowest form of an API in the User Mode (we can't go below it), from our User Mode injectors

perspective, but we can't trust NTDLL to perform it for us without detection. Let's take a deeper

look inside.

System Calls (syscalls) are assembly code stubs, traditionally stored in NTDLL, that provide an

interface from User Mode to the services made available by the operating system (from the

Kernel). These services are privileged tasks that a User Mode API can’t perform on its own, such as

creating	a	file,	or	starting	a	thread.	The	syscall	assembly’s	opcodes	task	is	to	change	the	mode	of	
execution from User Mode to Kernel Mode and invoke the correct Kernel API code, transferring the

user’s arguments. To monitor syscall usage, the EDR hooks the NTAPIs in the NTDLL’s code, in a

process called a syscall hook (similar to Inline Hooks).

To implement this autonomous system

call, let's take a look at one system call

placed	first	in	NTDLL:

However, it is possible to perform the system calls without invoking the NTAPIs in the NTDLL directly. By mimicking

NTDLL logic using assembly from our injector’s code, we're no longer on the EDR’s step hooks as we will directly call

“unhooked” Kernel code, which isn’t hooked by the EDR, thanks to PatchGuard.

The Reality of Multiple Hooks

System Calls

The System Call

Implementation Guide

F l y i n g U n d e r t h e E D R R a d a r13

Pentera Labs™ Research Series

The above syscall stub is taken from an x86 Windows machine. It aims to invoke

NtQueueApcThread in the Kernel.

Each of the elements described is affected and changed by Windows versions (XP - Windows 10,

Server 2003 - Server 2019), CPU architecture (x64, x84), and the possibility of WoW64.

Taking this into consideration, to attack every Windows distro without EDR detection, we want

to produce an Automatic and Autonomous (AA) syscall invoking solution, since we can’t hardcode

the syscall assembly stubs. When given an NTAPI name, the solution should invoke a valid self-

contained syscall for any given Windows operating system that it encounters (in the range of

systems explored by this project).

To	do	so,	we	built	each	variation	for	the	specific	elements	for	which	the	NTDLL	is	responsible	
(SSDT index resolution, call gate variations, calling conventions and argument count), which then

binds the correct elements together in runtime. By doing so, we succeeded in slipping past the

“EDR Radar”, and executing our injections.

In the previous section we discussed the NTDLL responsibilities regarding the syscall (SSDT Index,

Call Gate, Calling Convention and Argument Count).

In this section, we will show how to bind these elements to an automatic solution for invoking an

autonomous syscall, and evading EDR detection using it.

This code stub is responsible for the following tasks:

Resolving the SSDT Index - an index inside the System Services Dispatch Table (SSDT) This is a

table in Kernel space that links an NTAPI’s index to the address it is mapped to in Kernel space

(usually inside ntoskrnl.exe). The stub saves it in EAX. In the code above, this index is 0x10d.

Calling a Call Gate - this is the instruction, or set of instructions, that tells the CPU to switch to a

privileged	mode.	In	the	above	code,	this	is	the	KiFastSystemCall,	a	symbol	provided	by	NTDLL	in	
x86 systems, that invokes the opcode “sysenter”.

Handling Calling Convention and Argument Count - handling the correct number of arguments,

determining how to pass those arguments to the called function, the call gate in our case, on

stack	or	on	memory,	and	finally	cleaning	them	from	memory	after	the	syscall	returns.

•

•

•

Implementing AA (Automatic Autonomous) Syscall Engine

To	invoke	a	syscall	we	first	need	to	set	its	SSDT	index,	exactly	the	same	way	the	NTDLL	does.
In the previously presented NtQueueApcThread syscall stub, the EAX value is set to 0x10d, which

is	the	value	for	the	NtQueueApcThread	SSDT	index	in	a	specific	Windows	distro.	This	index	is	not	
documented	and	changes	for	every	API,	based	on	the	specific	Windows	platform	it's	on.

Ssdt Index

F l y i n g U n d e r t h e E D R R a d a r14

Pentera Labs™ Research Series

We need to accurately resolve the index in real-time as part of our process in executing a

successful syscall.

We could try to parse this from our memory loaded copy of NTDLL, which saves it in EAX, but it’s

not as reliable as on EDR defended systems where this index is overridden by the EDR syscall hook!

To locate the index reliably, we will parse our hard disk copy of the NTDLL PE, which is much less

likely to contain any changes as its integrity is critical for the OS stability. The results from parsing

it will be loyal to the Windows version it was found on.

The result is saved in a global memory address (C global) named SYSCALL_INDEX, for us to

reference later.

The entire function to do so is as follows:

General stages for resolving an NtApiName:

Map	NTDLL	file	to	program	memory	-	MapViewOfFie
Parse PE headers and iterate export directory - .edata

Locate NtApiName export address

Parse MOV EAX, index_value from the MOV opcode found in the export address

Save result

1.

2.

3.

4.

5.

F l y i n g U n d e r t h e E D R R a d a r15

Pentera Labs™ Research Series

The call gate is the instruction or set of instructions that tell the CPU to switch to a privileged

mode. There are a number of variations, depending on the Windows version and the current CPU

architecture. Among them are:

Call Gate

int 0x2e - an interrupt to the OS, for pre Windows XP.

sysenter - an Intel instruction that switches faster to privileged mode. Relevant for all operating

systems after Windows XP, in x86.

KiFastSystemCall	-	a	function	exported	from	NTDLL,	saves	esp	(stack	pointer)	in	edx	,	prior	to	
the sysenter opcode invocation. It is the correct way to invoke sysenter in x86 systems.

•

•

•

F l y i n g U n d e r t h e E D R R a d a r16

Pentera Labs™ Research Series

Syscall - an Intel instruction similar to the ‘sysenter’ counterpart, but for x64 systems.

Call	fs[0xc]	-	for	WoW64	-	calling	an	address	mapped	in	offset	0xc	of	the	FS	
register.	The	address	is	a	field	in	the	TIB	which	points	to	a	function	in	wow64cpu.
dll. The goal of this function is to switch from 32bit data and memory addresses to

64bit and then call the syscall x64 instruction.

x86 systems - sysenter

x64 systems

• We are an x64 malware - syscall

• We are an x86 malware - call fs:0xc0

•

•

•

•

Working with Windows XP and higher, we only have to implement three call gates. We’ll do so in an

inline assembly within our C++ code like so:

We must now choose the correct call gate to use in runtime. There are three main cases; we'll choose

the correct call gate for each case as follows:

F l y i n g U n d e r t h e E D R R a d a r17

Pentera Labs™ Research Series

To	perform	this	task,	we'll	use	an	initialization	at	the	beginning	of	the	runtime,	querying	the	OS	and	
binary	architecture,	and	selecting	the	correct	call	gate	accordingly.	Finally	we’ll	save	the	correct	call	
gate in a global variable called SYSCALL_CALLGATE, as follows:

Windows APIs have a varied range of argument count and argument types. According to the CPU

architecture of the Windows host, these arguments are passed along to the Kernel when invoking

the call gate. The method in which arguments are passed along between functions, and how they are

cleaned up afterwards is called, calling convention.

In both options the API itself is responsible for cleaning up stack memory after use (stdcall being

callee clean-up).

This set of tasks is entrusted by NTDLL, and is critical to the system's call success

Calling Convention

Windows API uses the stdcall calling convention. The convention is affected by the host

CPU architecture:

x86 - arguments are passed along on the stack.

x64	-	first	4	arguments	are	passed	on	the	registers	RCX,	RDX,	R8	,R9,	and	the	rest	are	on	the	
stack (fastcall)

•

•

F l y i n g U n d e r t h e E D R R a d a r18

Pentera Labs™ Research Series

To	achieve	achieve	this	level	of	delicate	flexibility	and	control	on	our	own,	we	can	harness	the	
power of the C compiler, which naturally handles these tasks for the code it generates. To guide the

compiler to generate the correct convention for us, we’ll use function pointer, typedefs which allow

us to control the argument count and type, return value, and order the compiler to use the desired

calling convention.

Defining	a	function	typedef	for	an	NTAPI	we	want	to	invoke	as	an	autonomous	syscall,	will	allow	us	
to	cast	our	syscall	call	gate	address,	which	is	stored	in	a	global	parameter,	as	this	specific	typedef.	
Then, we can treat it as a normal API call, adding arguments on the right etc. The compiler will do the

heavy lifting and generate the assembly code responsible for the task.

We create function pointer typedefs for each NTAPI our program will syscall. Some examples are:

It’s important to note the calling conventions order the compiler to use - cdecl. As opposed to stdcall,

cdecl is a caller clean-up convention, meaning the code invoking a cdecl function is responsible

for cleaning up stack memory. This is great for us - using it will order the compiler to generate the

correct	cleanup	code	(e.g.	RET	variable_size_of_args)	wherever	we	invoke	a	syscall	cast	with	a	cdecl	
typedef, instead of writing it ourselves in assembly before the call gate, a complex task as variable_

size_of_args	can	be	any	size	and	will	break	our	code	simplicity.

F l y i n g U n d e r t h e E D R R a d a r19

Pentera Labs™ Research Series

So far we have a set of globals, code stubs and function typedefs that handle NTDLL responsibilities,

but we must still bind them together at runtime for each NTAPI invocation. Wrapping it all with a

function proves to be problematic, as function calls change the stack layout and register states that

we handle and rely on during the syscall process.

Our solution will be to create a macro which allows us to reuse a code sequence without calling an

unnecessary function to invoke it, as follows:

Finally,	all	that’s	left	is	to	paste	the	normal	arguments	for	the	syscall	right	after	the	macro

One Macro To Rule Them All

This macro:

Receives an NtApiName to invoke, and a syscall_result variable to save its result.

Resolves NtApiName’s SSDT index by invoking GetSyscallIndexHD. The result is stored in the

SYSCALL_INDEX global.

Contacts “s” and NtApiName’s string value - to reference our relevant function typedef.

With this typedef the macro casts the address of a symbol called ”syscall”. The “syscall” is the

address of a stub we created that saves the prior resolved SYSCALL_INDEX to EAX, and jumps

to invoke SYSCALL_CALLGATE global, as follows:

1.

2.

3.

4.

F l y i n g U n d e r t h e E D R R a d a r20

Pentera Labs™ Research Series

invocation, just as we would do with a normal API. Our self contained syscall gets triggered and its

result is saved in the syscall_result variable.

Following	is	a	usage	example	for	invocating	the	set	of	APIs	our	EDR	evasive	shellcode	injector	uses:

Once these syscalls are triggered autonomously - our injector can inject its payload to a remote

process and start it, undetected by the EDR.

But	what	about	the	payload	execution?	Are	its	API	calls	protected,	as	well?

Let’s	take	Mimikatz	as	a	sample	payload	for	our	injector	(assuming	we	reflectively	loaded	it).	The	
autonomous	syscalls	that	our	injector	invokes	can	successfully	evade	the	EDR	and	load	Mimikatz	
into memory.

The	Mimikatz	binary	we	reflectively	loaded	still	invokes	normal	API	calls	-	which	still	step	on	
EDR	hooks	-	in	turn,	triggering	the	EDR	defenses.	Among	these	Mimikatz-invoked	APIs	are	very	
suspicious calls sent to ReadProcessMemory with an LSASS handle as an argument - calls that

every decent EDR will monitor and block as a credential dumping attempt.

The	reason	that	our	injected	Mimikatz	gets	caught	is	that	it	invokes	APIs	normally,	searching	them	
in its IAT (also injected with it), on its remote process (no longer the injector), and without access

to the autonomous syscall invocation code.

To	overcome	that	we	can	write	a	redirection	function,	that	will	invoke	its	fitting	syscall	for	an	API	
call into our injector's code. Such as NtReadVirtualMemory for ReadProcessMemory:

Hooking The Injection

To	connect	our	local	redirection	function	and	the	remote-injected	Mimikatz	-	all	we	need	to	do	is:

F l y i n g U n d e r t h e E D R R a d a r21

Pentera Labs™ Research Series

By	doing	this,	everytime	the	Mimikatz	injection	invokes	a	ReadProcessMemory	call,	it	resolves	
through its IAT and invokes our injected redirector function - which results in an autonomous

syscall invocation to NtReadVirtualMemory. Hooking the injection can be replicated in this fashion

to any API invocation you’d want to mask from the EDR.

Inject the redirection function from our code to the target process (read it from our code and

write the buffer to remote process).

Hook	the	IAT	(more	on	IAT	Hooking)	of	the	Mimikatz,	before	injecting	it,	to	point	to	the	remote	
address of the redirector code.

•

•

We aim to contribute and empower you with this information, and are hopeful the next generation

of antiviruses will be able to detect activity similar to the steps we performed in this paper.

CATCH’M ON THE “MUST INVOKE” APIS

To establish the autonomous syscall invocation, we still have to invoke regular API calls for

mapping NTDLL to our memory, searching SSDT indexes.

Mapping an extra NTDLL copy to memory is suspicious as it is already loaded to each process by

default. Calls like these, with NTDLL as their target, might be a “smoking gun” for EDRs to detect

syscall invocations.

Recommendations For EDR System Developers

In this paper we demonstrated how it is possible to perform syscalls without invoking

the NTAPIs in the NTDLL, therefore successfully evading EDR detection. In an

everchanging threat landscape, hackers constantly develop evasive techniques that

challenge defense technologies. Security EDR professionals must continue to detect and

block the more obscure injection invocations as those described in this paper.

Recommendations and Takeaways

This means it’s still possible to monitor API calls that do so, such as:

CreateFileA
CreateFileMapping
MapViewOfFile
UnmapViewOfFile

•

•

•

•

F l y i n g U n d e r t h e E D R R a d a r22

Pentera Labs™ Research Series

When	analyzing	normal	threads	running	Kernel	code,	such	a	stack	would	have	User	Mode.

This is, of course, not a natural call stack state and, so it can be a good indication that a direct

syscall	invocation	was	made	from	the	examined	thread.	Analyzing	threads	from	Kernel	Mode	and	
their call stacks allow us to detect such behaviors.

API addresses, followed by Kernel API addresses, like this example running CreateFile:

When invoking syscalls autonomously, without User Mode DLL support, we find a result call
stack jumping straight to Kernel references because we evaded interacting with User Mode

DLLs. For invoking a direct syscall for NtCreateFile from a process, the stack would look like so:

ntoskrnl.exe!ZwCreateFile	+23
ntdll.dll!NtCreateFile	+	5
kernel32.dll!CreateFileA	+	10
Explorer.exe!SomeExplorerFunction	+	7

ntoskrnl.exe!ZwCreateFile	+23
SyscallerFileOpener.exe!main	+	17

•

•

•

•

•

•

The call stack is the collection of each return address thread pushed for return during code

execution and function calls. With the call stack, we can trace which functions were executed by a

thread, as seen with the “Return address of P*” in the following diagram:

Trace with Call Stack Monitoring

https://www.youtube.com/watch?v=Q2sFmqvpBe0	-	More	about	callstacks

F l y i n g U n d e r t h e E D R R a d a r23

Pentera Labs™ Research Series

This low-level detection from the Kernel Mode can detect, among other things,

injections created from API variations and even the one we created with direct syscall

usage.	Threat	Intelligence	ETW	is	available	for	verified	security	vendor	usage	and	can	be	
a great solution to reduce the direct syscall attack surface.

Event Tracing for Windows (ETW) is another available source for EDRs to get notifications
about events in the system. It resides in Kernel Mode and allows its User Mode to record defined
events to a log file. Unlike Kernel callbacks, ETW will only receive notification about events and
not intervene, yet the Threat Intelligence ETW within the EDR allows for very precise API usage

notification. With ETW an EDR vendor can even detect calls such as NtQueueApcThread. Some
other API usage events it has the power to log are:

Security professionals should treat every line of defense as if it is flawed. Question the existing
security approach, regularly investigate implemented security products, validate the security

posture, and continuously research better defense lines. Below are a number of best practices

to follow:

EtwTiLogInsertQueueUserApc

EtwTiLogAllocExecVm

EtwTiLogProtectExecVm

EtwTiLogReadWriteVm

EtwTiLogDeviceObjectLoadUnload

EtwTiLogSetContextThread

EtwTiLogMapExecView

EtwTiLogSuspendResumeProcess

EtwTiLogSuspendResumeThread

Regularly consult with the MITRE ATT&CK framework and particularly, implement mitigation

recommendations such as the Antivirus/Anti-Malware recommendations they’ve outlined. 3

Consult with and use Microsoft recommendations, such as those published for threat

protection.

Implement continuous automated network testing products such as Pentera, designed to help

identify blindspots before they are leveraged by attackers and strengthen the enterprise cyber-

posture to the maximum.

•

•

•

•

•

•

•

•

•

•

•

•

Use Threat Intelligence ETW

Recommendations For Security Executives

3 MITRE ATT&CK 2015-2020. MITRE ATT&CK. Retrieved from https://attack.mitre.org/mitigations/M1049/

https://attack.mitre.org/mitigations/M1049/
https://docs.microsoft.com/en-us/windows/security/threat-protection/
https://docs.microsoft.com/en-us/windows/security/threat-protection/
https://www.pentera.io/platform/
https://attack.mitre.org/mitigations/M1049/

F l y i n g U n d e r t h e E D R R a d a r24

Pentera Labs™ Research Series

It’s true that EDR defenses are an important component of the enterprise security technology

stack and security teams should continue to use them. However, there are many attack objectives,

protocols, and access types that attackers might focus on when approaching a network and it’s

crucial not to overlook unexamined security loopholes that may be exploited. Of the twelve attack

tactics described by MITRE ATT&CK, this paper alone demonstrated the implementation of three

(execution, defense evasion and credential access).

By incorporating security testing automation technologies that follow the MITRE ATT&CK matrix,

security teams can comprehensively cover all attack steps for each platform, and multiply the

scope, ultimately achieving holistic visibility of the security stack. The gap between the total attack

surface and the validated attack surface can be reduced dramatically with automated penetration

testing technologies.

We conducted this research and PoC for the defense community with the hope of shedding light on

core processes in Windows. By focusing on both the antivirus and malware mindsets, we try to offer

additional thought processes that attackers may have, to ultimately lead to the creation of stronger

detection by security technology developers. We hope to put the presented vectors in the spotlight

and give researchers the tools to explore and challenge them. Hopefully, by doing so, they will take

the world's existing defenses one step further.

Conclusion

https://attack.mitre.org/matrices/enterprise/windows/

To understand how the different parts of the system operate together, how EDRs protect the

system, and how malicious actors can evade those guardrails to attack, we’ll review fundamentally

related concepts.

Appendix A: Windows components and terminology

F l y i n g U n d e r t h e E D R R a d a r25

Pentera Labs™ Research Series

The Portable Executable (PE) format is an architecture-agnostic data structure packaged as an

image	and	used	to	deliver	the	files	needed	for	Windows	32	and	64-bit	operating	systems	to	run	
properly. The package includes executables (exe), object code, DLLs, dynamic library references for

linking, API export and import tables, resource management data and other thread-local storage

(TLS) data. 4

The PE image consists of different layers as well as additional data, including PE and section

headers, and image pages. Most resources are stored in the section layers such as .idata (API

imports), .edata (API exports), .text (code), .rsrc (strings), and other resources. Also included are the

import library and the Authenticode PE Image Hash, used to authenticate the PE.

The complete PE format is described in the Microsoft	specifications.

Dynamic	link	libraries	(DLL)	are	a	type	of	PE	file	that	contain	code	and	data	that	can	be	used	by	
different programs in the same system simultaneously, by copying them to their folders and

mapping to the necessary functions in order to run.

The	IAT,	one	of	the	objects	maintained	in	a	PE	file	contains	information	that	enables	programs	to	
import	and	use	specific	APIs	and	functions	located	in	DLL	files	by	indicating	where	exactly	those	
functions are.

Portable Executable

Dll (Dynamic Link Libraries)

Import Address Table (Iat)

4 Microsoft 2020. Microsoft Docs. Retrieved from https://docs.microsoft.com/en-us/

https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#file-headers
file:///Users/zivalmog/Desktop/Pentera%20Labs%20Branding%20/ https://docs.microsoft.com/en-us/

F l y i n g U n d e r t h e E D R R a d a r26

Pentera Labs™ Research Series

Application Programming Interfaces (APIs) enable two applications to talk with each other and

share	information	(requests	and	responses).	Windows	APIs	specifically	are	a	set	of	APIs	that	
allow for service requesting from the operating system. They can be used from user mode or

kernel mode.

Examples	of	these	APIs	include	OpenFile,	URLDownloadToFile,	VirtualAlloc,	and	CreateProcess.	
API	usage	in	Windows	depends	heavily	on	the	PE	structure.	They	are	stored	in	Windows	DLL	files	
and	exported	from	those	files	and	then	imported	to	every	PE	file	that	references	them.	The	final	
implementation.

IAT hooking is a common method used by malicious actors, and is also well-known and protected

against by EDR techniques.

A hook can be placed in the IAT (user mode) in order to trick programs into accessing malicious

code by mis-directing programs towards the malicious code instead of the function or API that the

program requested. Once upon a time, hooks could also be placed in the SSDT in order to access

the kernel similarly, but today kernel patch protection prevents such activity.

Windows API

Import Address Table (IAT) Hooking

For example:

Program wishes to invoke a function

The program searches its IAT for information on the function

IAT directs the program to a location within DLL, pointing to the necessary function.

Program runs the function.

1.

2.

3.

4.

With IAT hooks, the malicious actor:

Accesses the PE header of a running process, or of a target DLL in the memory of that process.

Parses the PE header.

Accesses the IAT to understand how APIs and functions are mapped.

Changes the mapping from the IAT to malicious APIs, functions or other code. Thereafter,

whenever the victim process accesses the IAT, that process is directed to execute the

malicious code.

•

•

•

•

F l y i n g U n d e r t h e E D R R a d a r27

Pentera Labs™ Research Series

Inline	hooking	is	direct	code	modification,	and	is	another	method	used	by	malicious	actors,
in	which	the	actor	modifies	the	actual	code	rather	than	modifying	the	pointer	towards	code.
When an inline hook is implemented it overwrites a Windows API in order to redirect the code

flow.	Inline	hooking	can	be	used	in	both	the	kernel	and	user	modes.

Assembly language, often abbreviated asm, is any low-level programming language in which there

is a very strong correspondence between the instructions in the language and the architecture's

machine code instructions. Because assembly depends on the machine code instructions, every

assembler	has	its	own	assembly	language	which	is	designed	for	exactly	one	specific	computer	
architecture.	Each	assembly	language	is	specific	to	a	particular	computer	architecture	and	
sometimes	to	an	operating	system.	However,	some	assembly	languages	do	not	provide	specific	
syntax for operating system calls, and most assembly languages can be used universally with any

operating system, as the language provides access to all the real capabilities of the processor, upon

which all system call mechanisms ultimately rest. An assembler program creates object code by

translating combinations of mnemonics and syntax for operations and addressing modes into their

numerical equivalents.5

The assembly register includes four data registers, which are the mnemonics of the assembly

language: EAX, EBX, ECX, and EDX.

Inline Hooking

Assembly And Assembly Registers

5 Wikipedia 2020. Assembly Language. Retrieved from: https://en.wikipedia.org/wiki/Assembly_language.

With inline hooks, the malicious actor:

Accesses the PE header of a running process, or of a target DLL in the memory of that process.

Parses the PE header.

Accesses the IAT to understand where APIs are mapped.

Takes the address of the target API (Instead of remapping as is done in IAT).

Edits the code inside the address of the target API - to point to a different functionality.

•

•

•

•

•

https://en.wikipedia.org/wiki/Assembly_language

F l y i n g U n d e r t h e E D R R a d a r28

Pentera Labs™ Research Series

Microsoft 2020. Microsoft Docs. Retrieved from https://docs.microsoft.com/en-us/

MITRE ATT&CK 2015-2020. MITRE ATT&CK. Retrieved from https://attack.mitre.org/

techniques/T1221/.

NtCreateSection + NtMapViewOfSection Code Injection. Retrieved from: https://

ired.team/ offensive-security/code-injection-process-injection/ntcreatesection-+-

ntmapviewofsectioncode- injection

Nowak,	Tomasz.	NTAPI	Undocumented	Functions.	Copyright	©	2000-2195.	Retrieved	from:	
http://undocumented.ntinternals.net/

Microsoft	Defender	ATP	Research	Team.	From	alert	to	driver	vulnerability:	Microsoft	Defender	
ATP	investigation	unearths	privilege	escalation	flaw.	March	25,	2019.	Retrieved	from:	
https://www.microsoft.com/security/blog/2019/03/25/from-alert-to-driver-vulnerability-

microsoftdefender-atp-investigation-unearths-privilege-escalation-flaw/
Adi Zeligson and Rotem Kerner. Enter The DarkGate - New Cryptocurrency Mining and

Ransomware Campaign. November 13, 2018. Retrieved from:

 https://www.fortinet.com/blog/ threat-research/enter-the-darkgate-new-cryptocurrency-

mining-and-ransomware-campaign

S. Sandeep. GCC-Inline-Assembly-HOWTO. March 2003. Retrieved from: http://www.ibiblio.

org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html.

Lawlor, Orion, PhD. Inline Assembly: Mixing Assembly with C/C++. 2014. Retrieved from:

https:// www.cs.uaf.edu/courses/cs301/2014-fall/notes/inline-assembly/

Simone Margaritelli. On Windows syscall Mechanism and syscall Numbers Exraction Methods.

February	11,	2014.	Retrieved	from:	https://www.evilsocket.net/2014/02/11/on-windowssyscall-	
mechanism-and-syscall-numbers-extraction-methods/

Wikipedia. x86 calling conventions. Creative Commons Attribution-ShareAlike License.

Retrieved from: https://en.wikipedia.org/wiki/X86_calling_conventions - calling conventions

MalwareTech. Windows 10 System Call Stub Changes. July 22, 2015. Retrieved from: https://

www.malwaretech.com/2015/07/windows-10-system-call-stub-changes.html

Jurriaan Bremer. Intercepting System Calls on x86_64 Windows. May 15, 2012. Retrieved from:

http://jbremer.org/intercepting-system-calls-on-x86_64-windows/

Issue	defining	a	function	in	inline	assembly	and	calling	from	c++.	(Posted	August	28,	2018).	
Retrieved	from:	https://stackoverflow.com/questions/52062330/issue-defining-a-function-
ininline- assembly-and-calling-from-c

A user guide to the gnu assembler as (GNU Binutils) version 2.25. Retrieved from https://

sourceware.org/binutils/docs/as/ - assembler directives for inline

how to do a relative jump/call with inline assembly in GCC (x86_64). (Posted January 18, 2015).

https://stackoverflow.com/questions/28014170/how-to-do-a-relative-jump-call-with-
inlineassembly- in-gcc-x86-64

NTRAISEHARDERROR. Introduction to Threat Intelligence ETW. April 13, 2020. Retrieved

from: https://undev.ninja/introduction-to-threat-intelligence-etw/

1.

2

.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

References

file:https://docs.microsoft.com/en-us/

Eliran Nissan, Cyber Researcher. After leading research projects and forensic investigations

in	the	Elite	IDF	CERT	unit,	Eliran	joined	Pentera	as	a	Senior	Security	Researcher.	Driven	by	his	
passion	to	reveal	security	flaws	in	our	computing	environments,	Eliran	leads	the	development	
of advanced payloads and defense evasions.

Pentera	is	the	category	leader	for	Automated	Security	Validation,	allowing	every	organization	
to test with ease the integrity of all cybersecurity layers, unfolding true, current security

exposures at any moment, at any scale. Thousands of security professionals and service

providers around the world use Pentera to guide remediation and close security gaps before

they are exploited.

For	more	info	visit:	pentera.io

About the author

About Pentera

F l y i n g U n d e r t h e E D R R a d a r29

Pentera Labs™ Research Series

https://www.pentera.io/

w w w. Pe n t e r a . i o

Pentera Labs™ Research Series

Flying Under

the EDR Radar

https://www.pentera.io/

