
Pentera Labs™ Research Series

The Good, Bad and
Compromisable Aspects
of Linux eBPF
2022 discoveries of new privilege

escalation techniques

M a t a n L i b e r

Pentera Labs™ Research Series

Purpose

Executive summary

 Does it apply to my organization?

 Who should take the time to read this document?

 Attack surface domain

 Relevant MITRE ATT&CK TTPs

 Recommended Mitigation

Taking it from the top with greater detail

 What is eBPF

 What makes eBPF such an interesting attack vector?

BPF - Key elements to Know

 BPF maps

	 The	BPF	verifier	and	ALU	sanitation
The culprit’s abettor - improper input validation

 Tech dive

Step 1: Getting an invalid register value

Step 2: Achieving heap out of bound read/write

	 ALU	sanitation	is	still	a	blocker
BPF helpers

Step 3: Achieving arbitrary read/write

 Kernel heap allocations

 Bypassing freelist randomization protections in the kernel

	 Using	bpf_structure	overwrite	to	gain	arbitrary	read/write
Step 4: Elevating privileges by overwriting our process credentials

Recap and a future plan for mitigation

About the author

About Pentera

Thanks & credits

References

03

03

03

03

04

04

04

05

05

06

06

06

06

07

07

08

09

09

13

15

15

16

18

18

19

20

20

20

20

Table of contents

T h e G o o d , B a d a n d C o m p r o m i s a b l e A s p e c t s o f L i n u x e B P F2

Modern hacking techniques often use legitimate operating system tools for bad purposes. Such is

the	potential	case	with	the	common	traffic	monitoring	Linux	subsystem	called	eBPF.	

eBBF is a two-way street that, if abused, allows the adversary direct access and privilege to the

Linux kernel. Although eBPF does impose restrictions on the code running in it, some of them can

be bypassed. This would result in the ability to run malicious code at the kernel level and achieve

privilege escalation. In this paper we will review how it is done.

The	fast-pass	to	disabling	this	privilege	escalation	technique	is	to	set	the	configuration	flag	for	
this subsystem to prevent unauthorized privileged access and assure the environment has the

latest kernel update.

For older kernels, a modern perimeter of access needs to be established to prevent and restrict

possible unauthorized access.

Reading this paper will allow you to understand the eBPF mechanism and how a fairly small bug

can lead to the compromise of the entire system.

Executive summary

Purpose

T h e G o o d , B a d a n d C o m p r o m i s a b l e A s p e c t s o f L i n u x e B P F3

You	might	be	prone	to	an	attack	that	leverages	eBPF	bugs	if	you	are	running	an	Ubuntu	
workstation or server that was provisioned in the past 2 years.

Does it apply to my organization?

SOC, Blue Teamers, DFIR and any other corporate function that manages the risk and response to

attacks	on	Ubuntu	devices.

On the other side of the cyber spectrum, Red Teamers and pen-testers are encouraged to read

this attack domain to enrich their attack engagements with hands-on tips from a senior security

researcher.

Who should take the time to read this document?

Pentera Labs™ Research Series

4

Exploitation for Privilege Escalation T1068

Ensure	that	your	Linux	distro	is	configured	not	to	allow	unprivileged	users	to	run	eBPF	programs.	
This	means	that	the	config	parameter	`unprivileged_bpf_disabled`	should	be	set	to	1	in	the	kernel	
to disable the possibility of running eBPF programs as an unprivileged user.

If	the	config	parameter	`unprivileged_bpf_disabled`	in	the	kernel	is	set	to	0,	it	will	be	possible	to	
run eBPF programs as an unprivileged user and the attack vector described in this paper may be

possible.

The	faulty	configuration	is	not	the	default	in	most	Linux	distributions.	For	example,	it	is	properly	
disabled in Red Hat distributions. However, this is not always the case, and should regularly be

monitored	and	enforced,	to	mitigate	against	malicious	tampering	and	modification.	

You can check the value of this kernel setting using the command:

cat /proc/sys/kernel/unprivileged_bpf_disabled

You	can	find	the	code	for	the	POC	on	Github	here.

Recommended Mitigation

Linux,	mainly	Ubuntu,	but	possibly	any	Linux	machine	where	unprivileged_bpf_disabled	flag	is	
set to 0.

Attack surface domain

Relevant MITRE ATT&CK TTPs

Pentera Labs™ Research Series

T h e G o o d , B a d a n d C o m p r o m i s a b l e A s p e c t s o f L i n u x e B P F

https://github.com/PenteraIO/CVE-2022-23222-POC

Input validation vulnerabilities are no rare sight in Linux distributions, with the most common

outcome being Privilege Escalation (PE). Just to name a few salient examples, we can recount

CVE-2020-8835, CVE-2021-4204, CVE-2021-20268, and most recently CVE-2022-23222, all of

which affect eBPF, an extended BPF JIT virtual machine in the Linux kernel.

In this paper, I will walk you through my thought process as I decipher the technical intricacies of

a vulnerability report and develop a novel exploitation technique that circumvents randomization

protections in the kernel.

Before we delve deeper into Privilege Escalation in eBPF, let’s take a step back to recap what

is the Berkeley Packet Filter (BPF), the foundation for eBPF technology. BPF is a technology for

operating	systems	that	allows	programs	to	analyze	network	traffic.	It	provides	a	raw	interface	to	
data	link	layers	(i.e.	Layer	2	connectivity),	allowing	a	user	space	process	to	supply	a	filter	program	
specifying	which	packets	it	wants	to	receive.	BPF	is	available	on	most	Unix-like	operating	systems,	
and eBPF is the extension for Linux and Microsoft Windows.

Essentially, an eBPF program is made of a series of special bytecode. An eBPF program can be

written in a higher-level language and then compiled into the bytecode, or, it can be written as a

set of x86 assembly-like instructions. eBPF programs have 11 registers including a stack pointer

and an auxiliary pointer, a program counter and a 512 bytes stack.

eBPF	is	designed	to	safely	and	efficiently	extend	the	capabilities	of	the	kernel	without	requiring	
changes to kernel source code or load kernel modules. For this reason, eBPF programs, as you

would expect, usually require high-level privileges to run.

Taking it from the top with greater detail

What is eBPF

5

Pentera Labs™ Research Series

T h e G o o d , B a d a n d C o m p r o m i s a b l e A s p e c t s o f L i n u x e B P F

https://www.thezdi.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification
https://ubuntu.com/security/CVE-2021-4204
https://access.redhat.com/security/cve/CVE-2021-20268
https://www.openwall.com/lists/oss-security/2022/01/18/2
https://www.netronome.com/blog/bpf-ebpf-xdp-and-bpfilter-what-are-these-things-and-what-do-they-mean-enterprise/
https://www.netronome.com/blog/bpf-ebpf-xdp-and-bpfilter-what-are-these-things-and-what-do-they-mean-enterprise/

eBPF certainly does a decent job imposing restrictions on the code, but that’s exactly where eBPF

vulnerabilities come into play, potentially allowing attackers to bypass restrictions and gain the

ability to run malicious code at the kernel level. From there, the path to privilege escalation is

surprisingly short.

6

Pentera Labs™ Research Series

T h e G o o d , B a d a n d C o m p r o m i s a b l e A s p e c t s o f L i n u x e B P F

BPF - Key elements to Know

A vital aspect of eBPF programs is the ability to share collected information, store state and store

data larger than the 512 bytes provided by the stack. For this purpose, eBPF programs use eBPF

maps. eBPF maps consist of key-value mappings and can be accessed from eBPF programs and

applications in userspace via system calls.

The ability to run code at the kernel level is a very powerful tool, and when placed in the wrong hands,

it	can	be	abused.	This	is	where	the	eBPF	verifier	comes	in.	The	verifier	has	a	crucial	role	in	running	
eBPF	programs:	making	sure	they	can’t	act	maliciously.	It	does	that	by	simulating	the	program’s	flow	
and checking many things, including tracking register values and types to name a few.

BPF maps

The BPF verifier and ALU sanitation

The eBPF register has 2 value types: pointers and scalars. The verifier is in charge of keeping
track of the register’s values and performing the following checks:

Pointer bounds checking (Both during run time and before the program runs).

Verifying that the stack’s reads are preceded by stack writes. This is necessary because the BPF

stack is not initialized to 0, which could lead to data leakage.

Disallowing writing of pointers to the stack, again preventing pointer leaks.

•

•

•

•

When you consider that an eBPF program is essentially code provided by the user that runs with

kernel-level	privilege,	the	significance	becomes	self-evident.	This	sounds	like	everything	an	
attacker could ever want - not that eBPF makes it easy for attackers.

What makes eBPF such an interesting attack vector?

On January 13, 2022, a security researcher dubbed ‘tr3e’ posted on Openwall a discovery

concerning an improper input validation in Linux Kernel eBPF. This vulnerability is the beginning of

our journey to privilege escalation.

eBPF	has	several	types	of	pointers,	some	of	which	have	the	phrase	`OR_NULL`	in	their	names.	
Curiously enough, this is because some operations are rather unpredictable and might either yield

pointers	or	fail	at	runtime	and	return	`NULL`.	In	other	words,	return	values	from	these	operations	
might or might not be usable - and this cannot be determined in advance.

For	this	reason,	OR_NULL	pointer	types	exist	as	an	intermediate	type,	which	can	be	checked	at	
runtime	against	0	to	determine	whether	a	pointer	is	`NULL`	or	not.	When	checking	against	0,	two	
branches	are	created:	in	one	the	pointer	type	is	without	`OR_NULL`,	and	in	the	other,	the	register	
instead	holds	a	scalar	value	of	0.	For	example,	the	pointer	`PTR_TO_MEM_OR_NULL`	would	change	
to	`PTR_TO_MEM`.	

Pointer arithmetic should only be allowed when a pointer is known to be valid, but not null. The

vulnerability	discovered	here	is	that	pointer	arithmetic	is	not	disallowed	for	several	OR_NULL	
pointer	types.	This	results	in	the	opportunity	to	trick	the	verifier	into	believing	that	no	operation	
was performed on the pointer, when, in fact, its value was actually tampered with.

Once	you	know	about	it,	the	vulnerability	is	not	difficult	to	spot	directly	in	the	code:	
https://git.kernel.org/

In this screenshot, we see that pointer arithmetic is prohibited on only some of the unpredictable

pointers. One look at this table shows just how many of the unpredictable

The culprit’s abettor - improper input validation

Tech dive

7

Pentera Labs™ Research Series

T h e G o o d , B a d a n d C o m p r o m i s a b l e A s p e c t s o f L i n u x e B P F

https://twitter.com/openwall
https://www.openwall.com/lists/oss-security/2022/01/13/1
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/kernel/bpf/verifier.c?h=v5.10.83#n6022

pointer types are not properly excluded from pointer arithmetic checks:

8

The most basic aspect of our attack vector involves creating a situation where we have a register

that	the	verifier	thinks	has	a	value	1,	but	actually	has	any	value	we	choose.	

SUCCESS!

Now the verifier thinks the register contains the value 1, when it actually contains X
(where X is any value we want).

Step 1: Getting an invalid register value

Pentera Labs™ Research Series

T h e G o o d , B a d a n d C o m p r o m i s a b l e A s p e c t s o f L i n u x e B P F

OR_NULL`	Pointers

PTR_TO_SOCKET_OR_NULL,	
PTR_TO_SOCK_COMMON_OR_NULL	
PTR_TO_TCP_SOCK_OR_NULL

PTR_TO_MAP_VALUE_OR_NULL
PTR_TO_BTF_ID_OR_NULL
PTR_TO_MEM_OR_NULL
PTR_TO_RDONLY_BUF_OR_NULL
PTR_TO_RDWR_BUF_OR_NULL

Verifier	Rules

Pointer arithmetic is prohibited

Pointer arithmetic is not prohibited

Any	of	the	`OR_NULL`	pointers	for	which	pointer	arithmetic	is	permitted	can	be	abused	to	trick	
the	verifier	into	believing	that	no	operation	was	performed	on	the	pointer,	when	in	fact	its	value	
was altered. This is where things start to get interesting. Let’s see how we go from a “mere” input

validation vulnerability to privilege escalation.

Assuming we want to load the value X into the register, we do the following:
Use	the	function	`bpf_ringbuf_reserve`	to	generate	a	PTR_TO_MEM_OR_NULL	in	REG_0,	making	
sure	the	actual	value	is	NULL
Copy	REG_0	into	another	register
Add	x-1	into	the	other	register.	At	this	point,	the	verifier	thinks	that	both	registers	either	point	to	
the same address as they did before this operation or contain null because of the vulnerability.

NULL	check	REG_0
• In	the	branch	where	REG_0	is	not	0,	we	exit	the	program.
 (We need to make sure this branch isn’t taken.)

• In	the	other	branch,	the	verifier	now	thinks	that	both	pointers	contain	0,	while	in	reality	the	
 second register contains x-1.

Add 1 to the register.

•

•

•

•

•

ALU	sanitation	is	one	of	the	mechanisms	used	to	ensure	that	pointer	arithmetic	in	BPF	programs	
is not malicious.

Let’s	analyze	why	ALU	sanitation	is	important.

If pointer arithmetic was not validated at all, an attacker could do the following (Keep in mind that

the addresses and size in the following example are just for visualization and do not represent real

values):

First, create a map with values of size 4 in user-mode. This would create the following layout:

Then execute the following eBPF program:

Step 2: Achieving heap out of bound read/write

ALU sanitation is still a blocker

9

Pentera Labs™ Research Series

Load	a	map	value	pointer	into	BPF_REG_1.1.

T h e G o o d , B a d a n d C o m p r o m i s a b l e A s p e c t s o f L i n u x e B P F

10

Pentera Labs™ Research Series

T h e G o o d , B a d a n d C o m p r o m i s a b l e A s p e c t s o f L i n u x e B P F

Add	4	to	REG_1:
`BPF_ALU64_IMM(BPF_ADD,	BPF_REG_1,	4)`

2.

Write	into	the	location	REG_1	points	to.3.

Here	the	verifier	comes	into	play.	It	keeps	tabs	on	the	register	and	its	boundaries	and	won’t	allow	
the program to run when it detects this out-of-bounds arithmetic.

Considering the primitive we achieved in the last step, you might think we could write out-of-

bounds using pointer arithmetic with our invalid register in the following manner:

11

Pentera Labs™ Research Series

T h e G o o d , B a d a n d C o m p r o m i s a b l e A s p e c t s o f L i n u x e B P F

Add	REG_2		into	REG_1:
`BPF_ALU64_REG(BPF_ADD,	BPF_REG_1,	BPF_REG_2)`

2.

Write	into	the	location	this	REG_1	points	to.3.

Use	our	primitive	to	get	an	invalid	BPF_REG_2	that	holds	the	value	4	but	the	verifier	thinks	
holds the value 1.

1.

12

Pentera Labs™ Research Series

T h e G o o d , B a d a n d C o m p r o m i s a b l e A s p e c t s o f L i n u x e B P F

This renders our invalid register obsolete. So, in fact, our program will execute but we won’t be able

to write out-of-bounds.

Our	next	step	is	to	figure	out	how	to	avoid	this	blocker	and	bypass	ALU	sanitation,	which	leads	us	
to BPF helpers.

This	way	the	verifier	thinks	the	arithmetic	operation	is	in-bounds.

Unfortunately,	ALU	sanitation	will	block	us	in	this	situation.	Whenever	the	verifier	sees	an	
arithmetic operation between one register holding a pointer and another register holding a scalar

of	which	the	verifier	knows	the	value	it	holds,	it	patches	the	operation	in	such	a	way	that	it	would	
retain its effect without using the second register.

The	verifier	thinks		BPF_REG_2	contains	the	value	1,	so	it	will	patch	our	instruction	in	step	2	to	the	
equivalent of:

`BPF_ALU64_IMM(BPF_ADD,	BPF_REG_1,	1)`

13

Pentera Labs™ Research Series

T h e G o o d , B a d a n d C o m p r o m i s a b l e A s p e c t s o f L i n u x e B P F

To avoid our previous mishap, we use another feature of eBPF to our advantage - BPF helpers. BPF

helpers are a set of APIs that BPF programs use for debugging, reading from packets, retrieving

the time since the system was booted, and more.

Since our goal here is to achieve Local Privilege Escalation and we are starting out with a limited-

privilege user, we can only execute certain types of BPF programs, as shown below:

The	code	snippet	above	is	taken	from	`bpf_prog_load`.	We	see	that	as	unprivileged	users,	
`bpf_capable()`	returns	false.	This	means	there	are	very	few	types	we	can	run:	BPF_PROG_TYPE_
SOCKET_FILTER	and	BPF_PROG_TYPE_CGROUP_SKB.	Anything	else	would	return	an	error	code.	

The problem is that each program type is allowed to call a different subset of the available helpers.

It	took	some	digging,	but	eventually	I	found	2	suitable	functions	for	use	with	the	BPF_PROG_TYPE_
SOCKET_FILTER	program	type:	

The	first	function,	bpf_skb_load_bytes,	is	a	function	meant	to	read	data	from	packets	into	
memory. Let’s have a look at its signature:

As we can see, it receives:

BPF helpers

bpf_skb_load_bytes
bpf_ringbuf_output

•

•

A	pointer	to	sk_buff	(which	contains	the	packet	data)
An	offset	into	the	sk_buff
A pointer to the destination memory

The amount of bytes to copy

•

•

•

•

14

Pentera Labs™ Research Series

T h e G o o d , B a d a n d C o m p r o m i s a b l e A s p e c t s o f L i n u x e B P F

The	second	function,	bpf_ringbuf_output,	is	a	function	meant	to	copy	data	into	a	ring	buffer	that	is	
used to communicate with the userspace from within an eBPF program.

Let’s take a look at its signature:

We still need our invalid register to achieve the OOB read/write with the two functions.

Let’s	circle	back	to	reiterate	why	we	want	the	verifier	to	think	our	register	has	the	value	of	1	and	
not	0:	If	we	try	to	copy	0	bytes,	the	verifier	will	not	allow	it,	but	it	will	not	block	us	if	we	make	it	think	
we’re copying 1 byte.

OOB WRITE SUCCESS!

By passing our invalid register as the length, we can achieve an out-of-bounds write. Just be
careful not to pass a normal scalar value that is out-of-bounds as this will tip off the verifier and
cause it to be disallowed.

OOB READ SUCCESS!

By passing our invalid register as the size, we can achieve an out-of-bounds read.

As we can see, it receives:

A	pointer	to	bpf_map,	that	would	be	the	map	containing	the	ring	buffer
A pointer to the data to be copied

The number of bytes to copy

Flags

•

•

•

•

15

Pentera Labs™ Research Series

T h e G o o d , B a d a n d C o m p r o m i s a b l e A s p e c t s o f L i n u x e B P F

To understand how we’re going to circumvent the problem and overwrite our map structure, we

first	need	to	understand	the	basics	of	kernel	heap	allocations.	

Allocations in the kernel heap eventually reside inside caches known as kmem caches. Kmem

caches hold allocations of a whole range of sizes. There’s a cache for each power of 2 starting with

8 and ending with 8192, along with 2 sizes that aren’t powers of 2: 96 and 192.

Every allocation size is rounded up to the nearest size and a free object from the corresponding

cache is allocated. For example, an allocation of size 560 would be rounded up to 1024 and a free

object	from	the	cache	`kmalloc-1K`	would	be	allocated.	

Each cache is made up of slabs, which are typically 4K bytes in size and split into many objects

according to their cache size. Whenever a cache runs out of free objects, it requests a new slab,

and the allocation is given from the new slab. However, within each slab, the allocations are

contiguous.

Here’s the kicker: If we can get 2 maps of the same size allocated one after another in the same

slab,	we	can	overflow	the	first	map	into	the	second	map	and	achieve	our	bpf_map	structure	
overwrite!

Our	first	step	is	to	allocate	a	map	in	user	mode	and	then	use	a	third	BPF	helper	function,	`bpf_
map_lookup_elem`	within	our	bpf	program,	to	get	a	map	value	pointer	that	was	assigned	to	a	key	
we	passed	as	a	parameter.	Now	we	have	a	map	value	pointer	we	can	freely	pass	to	the	previous	
helpers. However, now we encounter a new blocker.

Up	until	this	point,	we	have	achieved	OOB	read	and	write	but	we	still	have	a	problem	to	address:	
Using	the	aforementioned	BPF	helpers,	bpf_skb_load_bytes	and	bpf_ringbuf_output,	we	can	only	
overflow	our	map	value	pointers,	but	not	underflow	them.	

This	presents	a	problem	since	the	bpf_map	structure	is	located	in	memory	before the map values,

so we can’t simply overwrite it.

Kernel heap allocations

Now	that	we	have	OOB	read	and	write	to	some	pointer	to	memory,	we	need	to	find	a	good	
candidate that would serve as our memory pointer to overwrite to gain arbitrary read/write. BPF

maps	and	their	corresponding	structure,	bpf_map,	are	very	good	candidates.	

Step 3: Achieving arbitrary read/write

16

Pentera Labs™ Research Series

T h e G o o d , B a d a n d C o m p r o m i s a b l e A s p e c t s o f L i n u x e B P F

If only things were that easy. Simply allocating 2 maps won’t cut it because freelist randomization,

a mitigation introduced into the kernel, ensures that allocations from within the same slab are

randomly arranged.

Let’s say we have a slab with 4 free objects and we allocate 4 new objects from the same slab. If it

weren’t for freelist randomization, the objects would be allocated in a predictable order: 1 2 3 4. But

with the mitigation in place, we could get 1 4 3 2 or 2 3 1 4, or any other order of allocation, so there

is no way to know ahead of time that our allocations will be contiguous.

The issue might be clearer if visualized. For example, let’s allocate two maps one after the other:

bpf_map	A	followed	by	bpf_map	B.	Due	to	freelist	randomization,	we	might	get	the	following	result	
after allocating the two maps:

Obviously,	we	can’t	just	overflow	map	A	into	map	B,	because	map	A	resides	in	memory	after	map	B.	

However, if we keep allocating more maps, eventually we will get the desired heap layout. To do

this,	we	devise	a	probe	to	help	us	figure	out	the	order	of	allocations.	Every	time	we	allocate	a	new	
map, we update it with a unique value to serve as our probe. We then use our BPF helper call to

read out-of-bounds upstream from every map previously allocated to the location where the next

map’s value should be if the maps were allocated one after the other. We then check it against all

the unique values we created. If it's still not found, we repeat the process and eventually luck will

strike, providing us with the results we’re after: evidence that we have successfully allocated two

maps one after the other.

Getting back to our previous example, here is what the allocations would look like with the unique

value as a probe:

Bypassing freelist randomization protections in the kernel

17

Pentera Labs™ Research Series

T h e G o o d , B a d a n d C o m p r o m i s a b l e A s p e c t s o f L i n u x e B P F

Reading out-of-bounds from where unique value A resides, we read the contents of the next free

object looking for our probe, the value we generated for unique value B, but unfortunately, we won’t

find	it	there.	The	same	is	true	for	reading	out-of-bounds	from	map	B.

True,	in	the	above	example,	map	B	could	be	overflowed	and	eventually	overwrite	map	A	but	this	
solution is too unstable. The 2 free objects in the middle could be corrupted in the process,

causing the kernel to crash. While the original values could be re-written to avoid this problem,

this solution is only partial. Consider what happens if, in the meantime, the kernel allocated a new

object there? Again, we would overwrite it with different values and the kernel might crash.

There	is	one	scenario	where	a	map	could	be	safely	overflowed	to	overwrite	another	map.	Observe	
the following situation:

Here,	we	finally	got	lucky.	In	this	case,	we	will	read	out-of-bounds	from	map	C	and	find	unique	
value	A	exactly	where	we	would	expect	to	find	it	if	map	A	were	indeed	allocated	right	after	map	C	
(in memory rather than chronologically).

So, there we have it. We have found a foolproof method to circumvent freelist randomization

protections in the kernel and ensure that any out-of-bounds write will only overwrite map A. All

we have to do is repeatedly allocate maps with a unique value to serve as a probe and read out-

of-bounds	until	we	find	one	of	the	unique	values	we	generated	in	the	expected	spot,	which	will	
provide us with evidence that we got our target heap layout. That way we know that any out-of-

bounds write will only overwrite map A.

18

Pentera Labs™ Research Series

T h e G o o d , B a d a n d C o m p r o m i s a b l e A s p e c t s o f L i n u x e B P F

To	gain	arbitrary	read/write	in	the	kernel,	we	need	to	manipulate	some	of	the	bpf_map	structure	
members.

Arbitrary	read	is	fairly	trivial	to	achieve	by	overwriting	the	btf	member	of	the	bpf_map	structure	
and then accessing it through userland by the bpf syscall.

Arbitrary write is a bit more complex to achieve. The exact details are described in Manfred Paul’s

blog but the point here is that the process of gaining arbitrary read is very much doable.

(For those of you who are curious about the exact details, I’ll provide a short recap of the process:

By	overwriting	the	map_ops	member,	we	can	hijack	the	flow	of	many	operations,	though	first	we	
need	to	use	our	arbitrary	read	to	make	a	copy	of	the	original	map_ops	and	then	make	the	original	
pointer	point	to	our	fake	ops	table.	Then	we	need	to	replace	map_push_elem	with	map_get_
next_key	in	our	fake	table	and	alter	some	other	bpf_map	members	to	bypass	some	checks	within	
map_get_next_key.)	

The exact process is beautifully explained in Manfred Paul’s blog.

Using bpf_structure overwrite to gain arbitrary read/write

Step 4: Elevating privileges by overwriting our process credentials

Once we have arbitrary read and write, Privilege Escalation is around the bend.
Here’s how we get there:

Locate	`init_pid_ns`	(or	use	a	symbol	to	get	its	address).	
Go to init’s task structure

Iterate	init’s	task_struct	list	until	we	find	a	task_struct	with	the	pid	equal	to	our	own	process
Overwrite the uid, euid, and a few other members of our process cred structure with 0 to

achieve Privilege Escalation!

1.

2.

3.

4.

https://www.zerodayinitiative.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification
https://www.zerodayinitiative.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification
https://www.zerodayinitiative.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification

19

Pentera Labs™ Research Series

T h e G o o d , B a d a n d C o m p r o m i s a b l e A s p e c t s o f L i n u x e B P F

I hope you enjoyed diving into the depths of eBPF and following along the path of discovery to

unfurl an input validation vulnerability and discover how it leads directly to Privilege Escalation.

Our	journey	began	with	a	reported	vulnerability	in	the	BPF	verifier	affecting	input	validation,	which	
allowed	us	to	circumvent	the	verifier	using	an	invalid	register	value.	Next,	we	used	BPF	helper	
functions	to	manipulate	the	verifier	and	accomplish	heap	out-of-bounds	read	and	write.	
At	this	point,	we	had	the	ability	to	overflow,	but	not	underflow	our	pointer.	Since	we	still	needed	to	
gain	arbitrary	read/write	in	the	kernel,	we	needed	to	manipulate	some	of	the	bpf_map	structure	
members, which we achieved by developing a novel technique to bypass freelist randomization in

kernel heap allocations. This allowed us to overwrite our process credentials and achieve our goal

of escalating privileges in Linux!

My main conclusion as far as mitigating against theses kinds of vulnerabilities can be divided
into 2 categories:

Recap and a future plan for mitigation

Kernel	developers	-	extend	the	principle	of	ALU	sanitation	to	BPF	helpers	calls,	since	they	too	
allow for access beyond the bounds of a pointer.

Network	owners/security	admins	-	validate	your	network	continuously	using	automated	
validation solutions to verify if “minor bugs” in the eBPF mechanism can be leveraged for

privilege escalation and asset compromise.

1.

2.

Matan Liber is a Cyber Attack Team Lead, Security Researcher and exploit developer at

Pentera.	Prior	to	joining	Pentera,	Matan	served	in	a	classified	unit	in	the	IDF,	specializing	in	
malware analysis, reverse engineering and IR.

You can refer to these blogs for an in-depth explanation about eBPF and some of the ideas on

how to exploit it.

About the author

20

Pentera Labs™ Research Series

Pentera is the category leader for Automated Security Validation, allowing every organization

to test with ease the integrity of all cybersecurity layers, unfolding true, current security

exposures at any moment, at any scale. Thousands of security professionals and service

providers around the world use Pentera to guide remediation and close security gaps before

they are exploited.

For more info visit: pentera.io

About Pentera

T h e G o o d , B a d a n d C o m p r o m i s a b l e A s p e c t s o f L i n u x e B P F

Kernel Pwning with eBPF: a Love Story by Valentina Palmiotti

CVE-2020-8835:	LINUX	KERNEL	PRIVILEGE	ESCALATION	VIA	IMPROPER	EBPF	PROGRAM	
VERIFICATION	by	Manfred	Paul

•

•

I would like to give credit to two wonderful blogs I relied on heavily in my research:

eBPF - Introduction, Tutorials & Community Resources

Thanks & Credits

References

https://www.pentera.io/
https://www.graplsecurity.com/post/kernel-pwning-with-ebpf-a-love-story#toc-0
https://www.zerodayinitiative.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification
https://www.zerodayinitiative.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification
http://eBPF - Introduction, Tutorials & Community Resources

w w w. Pe n t e r a . i o

Pentera Labs™ Research Series

The Good, Bad and

Compromisable Aspects

of Linux eBPF

https://www.pentera.io/
https://www.facebook.com/Penterasec
https://www.linkedin.com/company/penterasecurity/
https://twitter.com/penterasec

