
Pentera Labs™ Research Series

Who Stole My Cookies?
XSS Vulnerability in Microsoft
Azure Functions
Learn how Pentera’s research team discovered a web XSS
vulnerability in Azure Functions and determined its exploitability.
The vulnerability was reported and fixed by Microsoft.

U r i e l G a b a y

Pentera Labs™ Research Series

Purpose

Executive summary

Does it apply to my organization?

Who should read this?

Attack surface domain

Relevant MITRE ATT&CK TTPs

Browser Security Concepts

 CORS (Cross-Origin Resource Sharing)

XSS (Cross-Site Scripting)

 Azure Functions

 Discovery of the Vulnerability

Conclusion

About the author

03

03

03

03

04

04

04

05

06

07

07

11

11

Table of contents

X S S V u l n e r a b i l i t y i n M i c r o s o f t A z u r e F u n c t i o n s2

Cloud-based services are a growing asset for enterprises to optimize scale and reduce
deployment efforts.

In our research, we found a web XSS vulnerability on Microsoft Azure Functions due to an improper
implementation of access control.

This paper shares a behind-the-scenes window into our process of discovering the vulnerability
and developing a proof of concept that demonstrated its exploitability. Following our report,
the vulnerability was patched by Microsoft in Q1 of 2022.

Learn how Pentera’s research team discovered a web XSS vulnerability in Azure Functions
 and determined its exploitability. The vulnerability was reported and fixed by Microsoft.

Executive summary

Purpose

X S S V u l n e r a b i l i t y i n M i c r o s o f t A z u r e F u n c t i o n s3

Not any more. This cloud vulnerability was fixed at the source on Azure servers,
and is no longer exploitable.

Does it apply to my organization?

Cyber experts and aficionados interested in professional growth and learning about
unconventional web attacks.

The methods presented in this paper are likely to prove an interesting starting point
 for further research.

Who should read this?

Pentera Labs™ Research Series

Exploit Public-Facing Application T1190

Cloud, Azure, Web, Server and Client-side attacks.

Attack surface domain

Relevant MITRE ATT&CK TTPs

Browser Security Concepts

4

The browser is responsible for client-side security measures aimed at limiting the web attack
surface as much as possible. One of these is sandboxing, a mechanism aimed at isolating each
accessed origins on the client-side, so that accessing a malicious origin will have no effect
on other concurrently connected origins or the data they store, such as cookies, databases
or storage.

Another basic client-side security measure is SOP (Same Origin Policy). SOP is a basic browser-
enforced standard that prevents origins from sending information directly from one domain to
another when the HTTP request is unique. Essentially, it prevents sharing of data across origins.
A unique HTTP request requires the right CORS permission.

Pentera Labs™ Research Series

X S S V u l n e r a b i l i t y i n M i c r o s o f t A z u r e F u n c t i o n s

Here are some examples of unique HTTP requests:
Unique content-type - application/JSON, application/xml
Unique HTTP method - PUT, DELETE, PATCH
Etc.

1.
2.
3.

If the HTTP request is unique, the browser will send preflight (OPTIONS) requests to inspect
the CORS policy and ascertain if the request can be permitted.

SOP aims to prevent direct unique HTTP requests to other domains, and as part of the preflight
flow an OPTIONS request is sent in advance.

The CORS policy is passed via an HTTP header, which indicates to the browser what the policy
is for accepting “unique” HTTP requests.

From the browser’s perspective, the client accesses “bank.com” and then “bank.com” tries to
access “api-bank.com” to get dynamic information for the specific client.

If CORS policy on api-bank.com allows bank.com to communicate with it (black lines), then the
requests from bank.com would be released by the browser and sent to api-bank.com. All other
origins would be blocked.

The following flow will be forced:

5

Pentera Labs™ Research Series

X S S V u l n e r a b i l i t y i n M i c r o s o f t A z u r e F u n c t i o n s

CORS (Cross-Origin Resource Sharing)

Let’s consider an example. Imagine a company “Bank” that has 2 websites:
“bank.com” which contains all static files for the website (HTML, CSS, JS, PNG, and more).
“api-bank.com” which implements all the dynamic logic of the website and is responsible for
all banking actions performed from the website. This website accepts JSON content-type.

•
•

Transfer money - Send POST request with content type JSON to api-bank.com

Transfer money - Send POST request with content type JSON to api-bank.com

a t t a c ke r. c o m

b a n k . c o m

a p i - b a n k . c o m

6

Pentera Labs™ Research Series

X S S V u l n e r a b i l i t y i n M i c r o s o f t A z u r e F u n c t i o n s

XSS is a category of code injection aimed at injecting malicious scripts into otherwise
trusted origins.

Such vulnerabilities occur when user input is not properly sanitized and can be used as a vector
for client-side scripts, which are then rendered by the browser. They give the attacker the ability
 to run JavaScript code within the context of a legitimate website.

Our investigation focused on reflected XSS, where the malicious code gets sent back by the server
to the client following a malicious HTTP request which contains it.

Below is an example of the flow we are interested in:

There are 3 main types of XSS:
Reflected – The malicious JS code is triggered by the specific client by leveraging an input
which is reflected to the client
Persistent – The malicious JS code is permanently injected into the website data (DB, static
files, logs, etc.) and is presented to users by the server
DOM – The malicious JS code is executed in the context of a legitimate client-side code
section belonging to the website

1.

2.

3.

Send link to victim using phishing
https://bank.com/?input=<script>alert(‘xss’)</script>

GET https://bank.com/?input=<script>alert(‘xss’)</script>

Server-side code
<?php echo $_GET[‘input’]; ?>

<script>alert(‘xss’)</script>

a t t a c ke r. c o m

b a n k . c o m

XSS OK
bank.com says:

XSS (Cross-Site Scripting)

Azure Functions provides an auto-scaling cloud service available on-demand for developing
websites that can run code sections without having to worry about resources, updates, and
operational maintenance.

Our findings concern one of the domains used by Azure to serve their Functions platform services:
functions.azure.com

After setting-up a function app resource, we intercepted the traffic originating from the browser
to the Azure portal, and we noticed the following request had been sent to “functions.azure.com”:

A parameter called “url” piqued our interest. The request indicated that “functions.azure.com”
 was sending a request to the website in the “url” along with the headers and body configured
in the parameters.

Discovery of the Vulnerability

Azure Functions

7

Pentera Labs™ Research Series

X S S V u l n e r a b i l i t y i n M i c r o s o f t A z u r e F u n c t i o n s

https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/

8

Pentera Labs™ Research Series

X S S V u l n e r a b i l i t y i n M i c r o s o f t A z u r e F u n c t i o n s

The screenshot below shows what happened next: After we passed the address of our malicious
HTML to the url parameter, we noticed that the script was contained in the response, unsanitized
and unencoded, and under the functions.azure.com context.

Since the content-type of the response is “text/html”, this means that the browser will try to parse
the response as HTML, a well known launchpad for XSS attacks.

With this information at hand, we created a simple HTML web page containing
an embedded script:

At this point, all we needed was to create a simple HTML form to send this request automatically
and exploit the XSS in “functions.azure.com”.

This may seem trivial and straight-forward, however, the content type of the request is
application/json. Owing to the SOP mechanism, we cannot send “unique” HTTP requests directly
to a website that is not part of the same domain.

Additionally, we needed to send the request over an HTML form for the redirection to be followed
automatically. Again, sending application/json content type cannot be done via HTML forms.

https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/

To execute the attack, we depended on the server supporting x-www-form-urlencoded
content type for the following 2 purposes:

9

Pentera Labs™ Research Series

X S S V u l n e r a b i l i t y i n M i c r o s o f t A z u r e F u n c t i o n s

We needed to get rid of application/json content type. So, in our next attempt, we tampered with
the format of the body of the request to fit x-www-form-urlencoded content, hoping that the
remote server (“functions.azure.com”) would accept it; and against all odds, it did!

Bypassing SOP (text/html) with non-unique HTTP requests to avoid preflight.
Ability to execute our requests using an HTML form, which does not support application/json

1.
2.

For our POC, we set up a website, which automatically executed this request, thereby proving that
we had achieved full-fledged XSS on “functions.azure.com”.

https://azure.microsoft.com/en-us/services/functions/

10

Pentera Labs™ Research Series

X S S V u l n e r a b i l i t y i n M i c r o s o f t A z u r e F u n c t i o n s

Up to this point, we have seen how we, as researchers, can tackle the discovery of this
vulnerability. However, the attacker point of view is somewhat different, as presented in the
following diagram:

Of course, the malicious HTML can contain any content, for example, to leverage phishing
techniques. The page will be displayed in the context of functions.azure.com. We could even
produce a very legitimate looking login form for phishing purposes, as in the following screenshot.
As a phishing site, this would likely prove highly effective and quite damaging.

CLIENT

http://attacker.com/

 Send link to "attacker.com"

 Send POST to AZURE (redirecting)

 Malicious code is running

 Fetch content from remote server

End-to-end exploitation flow

http://functions.azure.com/

1

2

4

3

http://attacker.com/pop.html

http://attacker.com/
http://functions.azure.com/
http://attacker.com/pop.html

19

Pentera Labs™ Research Series

X S S V u l n e r a b i l i t y i n M i c r o s o f t A z u r e F u n c t i o n s

After demonstrating how we uncovered an XSS vulnerability in Microsoft Azure Functions
including key security concepts and the attack chain, you should now be able to leverage attacks
and protect assets in a better way.

Conclusion

Uriel Gabay is a Senior Security Researcher and exploit developer at Pentera.
Prior to joining Pentera, Uriel served in a classified unit in the IDF, specializing in application
security and Red Teaming.

For any questions, feel free to reach out at uriel.gabay@pentera.io

About the author

Pentera is the category leader for Automated Security Validation, allowing every organization
to test with ease the integrity of all cybersecurity layers, unfolding true, current security
exposures at any moment, at any scale. Thousands of security professionals and service
providers around the world use Pentera to guide remediation and close security gaps before
they are exploited.

For more info, visit: pentera.io

About Pentera

https://www.pentera.io/

w w w. Pe n t e r a . i o

Pentera Labs™ Research Series

Who Stole My Cookies?
XSS Vulnerability in Microsoft
Azure Functions

https://www.pentera.io/
https://www.facebook.com/Penterasec
https://www.linkedin.com/company/penterasecurity/
https://twitter.com/penterasec

