" PENTERA Pentera Labs™ Research Series

_OLBins Against
‘he Machine

Reverse Engineering at Machine Speed

Matan Abutbul

" PENTERA Pentera Labs™ Research Series

Table of contents

03
03
04
05
06
09
10
1

13
13

13

Purpose

Executive Summary

The Cloak of Legitimacy

From a Simple Task to a Bigger Question
Old-School LOLBins Hunting

Moving to Automation

Automating the Manual Process

Scaling the Analysis

The Bigger Takeaway

Summary

About Pentera

LOLBins Against the Machine

E PENTERA Pentera Labs™ Research Series

Purpose

Attackers can utilize Living Off the Land Binaries (LOLBins) to execute commands, evade
detection, and maintain persistence using legitimate system tools already present in your
environment. This research explores how Al can be used to proactively discover new,
undocumented LOLBins before they are weaponized.

Executive Summary

The next LOLBin isn't in a threat intel feed:; it's hidinginyour /usr/bin directory right now.
But most defenders only discover it after it's been weaponized. | aim to flip this, helping defenders
proactively discover unknown binaries that can be abused for command execution. My research
introduces a novel approach that leverages Al to enhance reverse engineering by automating the
tracing of execution paths and identifying attacker-relevant functionality. LOLBins serve as a
case study for this methodology, but the framework is applicable to a wide range of binary analysis
problems that extend far beyond this single category.

Does it apply to my organization?

Yes. If your organization runs Linux, Windows, or macQOS environments and relies on built-in
system utilities for administration or automation. Even if you have robust endpoint detection,
these binaries can be abused for stealthy attacks that blend in with legitimate operations

Who should read this?

Security researchers, red teamers, and defenders (including CISOs and SOC analysts) who want to
understand and detect emerging “living off the land” techniques and learn how Al can be used to
scale binary analysis and uncover new abuse paths.

3 LOLBins Against the Machine

|2 PENTERA

Pentera Labs™ Research Series

The Cloak of Legitimacy

Picture a secure compound. Every vehicle approaching the loading dock is inspected. Unknown
cars are stopped, IDs are checked, and questions are asked. But what if, instead of showing up
inyour own car, you arrive in the delivery truck of a well-known/pre-approved vendor? You are
wearing the uniform, driving the right route, and following the expected process. To security, you
look like part of the daily routine. No one questions you. You are waved through without a second
glance.

This is exactly how attackers operate when they abuse LOLBins. These are legitimate system
executables, already present on most machines and used daily for administration. They are
signed, trusted, and pre-installed. Because of that, they rarely raise alarms. From the defender’s
perspective, they look like the vendor truck; part of business as usual.

But attackers see them for what they really are: low-noise, high-leverage tools for stealth and
persistence. Instead of dropping custom malware or noisy payloads, they turn the environment's
own tools against it. With LOLBIns, they can run arbitrary commands, pivot between machines,
establish footholds, and exfiltrate data without uploading a single foreign binary or tripping
traditional security controls. These actions are wrapped in the cloak of legitimacy, hiding
malicious behavior behind the trusted fagade of routine operations.

That is what makes LOLBiIns so effective. Most detection logic is built to flag anomalies; new
binaries, unexpected behaviors, or unusual traffic patterns. But LOLBins do not stand out.
Their presence is expected, their behavior appears ordinary, and their abuse often mimics real
administrative activity. As a result, defenders end up scanning for threats while the attacker is
already inside, quietly blending into the background noise of everyday operations.

This write-up focuses on discovering new LOLBins in Linux environments, though the same
principle applies across platforms. Windows, macQS, and cloud environments all contain their own
versions of native utilities that can be misused in similar ways. The central idea is universal: the
more trusted the tool, the more dangerous it becomes when used against you.

LOLBins Against the Machine

|2 PENTERA

Pentera Labs™ Research Series

From a Simple Task to a Bigger Question

It all started when | was working on a new feature for our product. The feature was intended to
add more options for executing commands with elevated privileges. So | went to the well-known
repository GTFOBins in order to search for matching binaries for the task.

During my work, there was one thought | kept circling back to: How hard is it to create such a
repository, and maintain it?

After finishing my initially assigned task, | had time for a little research that combined “old-fashioned”
reverse engineering and Al.

The research question was “Is it possible to use Al in order to automate the process of finding
new LOLBins?" Not just to document them after the fact, but to proactively surface binaries with
attacker-useful execution behavior before they are widely known.

The answeris YES, of course, but how?

As this was the leading question | had another thing in mind: | want to use Al to improve my efficiency
doing so. | remember back in the days the time and effort | used to spend in order to analyze just one
binary.

Before you can effectively automate a process, it's better to understand what the process looks like
manually. So | started some old-fashioned reverse engineering of one binary that is already known
for privilege escalation(/usr/bin/find).

If the binary is allowed to run as superuser by sudo, it does not drop the elevated privileges and may be used to
access the file system, escalate or maintain privileged access.

sudo find . -exec /bin/sh \; -quit

Source - https://gtfobins.qgithub.io/gtfobins/find/

What | had in mind was that when using a LOLBin to execute a command or execute another
binary, there must be some sort of relevant syscalls that are being used in the process. | wanted
to search for those functions and then take their arguments and back-track those arguments to
validate if they were passed from the main function using command line arguments.

That manual workflow became the foundation for everything that followed.

LOLBins Against the Machine

https://gtfobins.org/
https://gtfobins.github.io/gtfobins/find/

https://gtfobins.github.io/gtfobins/find/

|2 PENTERA

Pentera Labs™ Research Series

Old-School LOLBins Hunting

[0x0001beed]> afl | grep -E 'exec|popen|system|fork'

Whenever | plan to automate something, | start by mastering it manually. Before writing a single
line of code, | want to understand exactly how the behavior works, what it depends on, and which
decisions Il eventually need to replicate programmatically. In this section, 'l walk through the
manual analysis flow | performed using the radare? framework to determine whether a given
binary exhibits LOLBin-like behavior.

The goal of this section is not to teach radare2, but to demonstrate the reasoning process the
automation must later replicate.

After loading the binary into radare2, | begin by searching for common execution primitives:

Ox00007196 1 11 sym. imp.execvp
0x00007290 1 11 sym. imp.fork

| start with the first match. Ideally it's the one we're after. If not, | simply continue through the list
and repeat the process.

Next, | look for all cross-references to sym. imp . execvp effectively asking “Where in the binary
is execvp actually invoked?”:

[0x0001beeb]> axt @ sym. imp.execvp

fcn.oooofdfo 6x10186 [CALL:--x] call sym. imp.execvp

Inthis case, there is only one caller:
sym. imp.execvp isinvoked exclusively from £cn.0000£d£0 at address 0x10186.
Any external command execution in this binary must pass through this function.

After locating sym. imp . execvp and listing its cross-references, | now know exactly which
functions in the binary are responsible for spawning external commands. In this sample, execvp
is called froma single function, fcn.0000£d£0 at address 0x10186, so any command
execution must flow through this code path.

A bit of information about the function using : there are 298
instructions, meaning we need to focus on specific blocks. First, we would like to see the
parameters of execvp and where they come from LI IR I L 1P 2224 Wil print the
disassembled function where the execvp was called using
(and repeating the same process for every call site when there is more than one).

LOLBins Against the Machine

https://github.com/radareorg/radare2
https://github.com/radareorg/radare2
https://man7.org/linux/man-pages/man3/execvp.3.html

E PENTERA Pentera Labs™ Research Series

linspect how the argument registers are populated just before the exeevp call (4 instructions are
enough this time). In this case, the first argument (the program name)is built from r12.

g 1

12

call Ew'-,r' m. imp.

r12 isthe suspect, thisis the variable that holds the binary to execute next.

Around the execvp call there are several function calls: £cn.00021a£0, sym.imp.
dcgettext, sym.imp.error, fcn.00021cb0,and £cn.0001c150.

To decide where to dig next, we focus on data flow, not just proximity.

execvp uses r12 asargv, so we look for where r12 is last defined.

50 @ 0x10186

The other nearby calls(dcgettext , error, fcn.00021cb0)do not write to r12 at all. Rather,
they handle error messages and directory changes. £cn.0001c150 only influences whether we

reach the execvp call.

Only £cn.00021a£0 returns a value that becomes r12 and is later passed to execvp. That's why
we choose fcn. 00021a£0 as the next function to analyze.

Inside £cn.00021a£0 thereis only one call instruction(call £cn.00034980), and the function
immediately returns the value left in rax. Since fcn.0000£d£0 copies rax into r12 right after
calling 21a£0, we can confirm that whatever £cn . 00034980 returns ultimately becomes the
argument vector passed to execvp.

7 LOLBins Against the Machine

E PENTERA Pentera Labs™ Research Series

|> pd @ fcn.00021af0

- ! * (int64_t arg2, int64_t arg3);
- args(rsi, rdx) vars(8:sp[0ox10 x441])

; wnt64_t arg3

Now I'm going to skip a few intermediate steps(because the process becomes recursive)just
tovalidate that r12 isindeed the pointer returned by £cn. 00034980, and that it remains
unchanged until it is later used as argv in the execvp call.

After validation, we want to see where the execvp caller function(£cn . 0000£d£0)is coming
from.

Using EESIE LWL [k L:8{s] , we discover that this function is not called directly. Instead, its
address is stored as a function pointer in another function (£cn . 0001b550), which constructs
an internal action node.

[6x000085de]> axt @ fcn.ooBefdfo
fcn.0001b550 0x1babf [DATA:r--] lea ra»x

Tracing that backward reveals that £cn . 0001b550 is itself called from a small adapter function
(fcn.0000e550)that hardcodes the string "-exec" into rdi and then jumps into the action
constructor.

|> pd @ fcn.00O0E550
{);

This conclusively ties the only exeevp call in the binary to the parsing and evaluation of the —exec

expression in the user's command line.

8 LOLBins Against the Machine

|2 PENTERA

Pentera Labs™ Research Series

Tosumit all up, we're left with a tedious process (as always with reverse engineering) until
reaching that one function that matches our needs.

So after manually reversing a couple of already known LOLBins from GTFOBins to support my
claim that this process reliably surfaced their execution paths | wanted to start coding.

At this point, my goal was very simple: to automatically find those known binaries (GTFOBins) with
my tool, see whether it could rediscover known LOLBins, and potentially surface new ones that
had not yet been documented.

Moving to Automation

At this point, the obvious question is: where does Al come into play? That's where things start to
getinteresting.

In this tool, Alis not used as a shortcut or a replacement for reverse engineering.
Instead, it acts as a reverse engineering assistant inside the process.

The coreideais simple: the tool does all the heavy lifting first. It collects data, builds context
around each execution path, and only then sends a structured query to the Al. Al'srole is limited
to digesting that context and providing a decision: do the syscall parameters originate from
command-line arguments, or not?

To support this, I implemented a helper class called ATUt i1s, which handles all communication
with the Al backend: creating assistants, sending queries, and processing responses. In this
project used OpenAl, but the design is not tied to a specific provider. Any model with a Python API
could be plugged in without changing the core analysis logic.

At the same time, | wanted a clean separation between reverse engineering logic and tooling. For
that reason, | created another utility class called R2ut 1 1s. This class encapsulates all interactions
with r2pipe and exposes the same primitives | used during the manual analysis phase, such as
list functions, cross-reference discovery, and disassembly retrieval, along with additional helpers
needed for automation.

With these building blocks in place, the focus shifted to the logic of the tool itself.

LOLBins Against the Machine

E PENTERA Pentera Labs™ Research Series

Automating the Manual Process

get

The plan was to build an automated tool that accepts either a single binary or an entire directory
(suchas /usr/bin) asinput, and then follows the same reasoning process | previously applied
by hand to each discovered executable.

First, each binary is opened using r2pipe, and full analysis is performed using radare?2.

Next, the tool identifies candidate execution functions. Rather than relying solely on predefined
assumptions, it can first leverage Al to analyze the full list of functions extracted from the binary
and determine which ones are capable of executing external commands. Al is also used to sort and
prioritize these candidates, allowing the analysis to focus on the most relevant execution paths
early on.

This Al-driven classification is used as a discovery mechanism, especially for binaries that rely on
less obvious helpers or undocumented execution wrappers.

sorted_common_functions_ai(self, client: openai.OpenAI, assistant_id: str, functions: List[str]) -> List[str]

logger.info(f"Querying AI for sorting the following functions: {functions}")

prompt = (

)

"Given these execution-related functions from a binary analysis:\n{functions}\n"

"What is the most common function that a binary arguments will use in order to execute a command?\n"
"Oorder from the most to the least common function, if a function is not related to executing a command, "
F" rem it from the reply.”

F"return a valid JSON array with no code block formatting, no backticks and no extra text”

response = self.aiutils ai_assistant(client, assistant _id, prompt)

json_response = json.loads(response)
logger.info(f"sorted execution functions list (most-least common) based on AI: {json_response}")

json_response

.warning(f"Error parsing JSON response from AI, using default functions.™)

self. pet sorted common functi (functions)

To keep the analysis grounded and fail-safe, the tool also maintains a predefined list of well-known
execution primitives such as execl, execvp, popen, fork,and system. Thislistactsasa
fallback and a safety net, ensuring that common and well-understood execution paths are always
included, even if the Al classification is inconclusive or unavailable.

10

LOLBins Against the Machine

E PENTERA Pentera Labs™ Research Series

For each detected execution call, the tool builds a reverse call graph, starting from the execution
point and tracing backward through the program until it reaches the entry point, typically main or
an equivalent dispatcher function.

analyze ion_functions_ai(self, r2, client, assistant_id):

exec_funcs = self.r2utils.get_execution functions(r2)

exec_funcs:

sorted_functions = self. get sorted _common_functions_ai(client, assistant_id, exec_funcs)

r func in sorted_functions:

logger.infc ution function: {func}")

xrefs = self.r2ut g for_function(r2, func)

f xrefs:
logger.info(f"Found {len(xrefs)} cross-references for {func}: {[x.get('fcn_name’', x.get('name’))
xref in xrefs:
chain = []
_command_execution = self.recursive_a ysis_ai(r2, func, xref, client, assistant_id, depth=0, call_chain=call_chain)
if is_command_execution:
255_command(client=client, tant_id=assistant_id)

: func, : "1 xref[' fcn_name

": xref["from'], 'command': guessed_command}

While building this call chain, the tool collects code snippets from each function along the path.
These snippets preserve contextual disassembly around each call site and are later used for
argument tracing and validation.

Once a complete call chain is constructed, the tool extracts the arguments passed to the
execution function and traces their origin through the collected code. The goal is to determine

whether those arguments ultimately originate from the program’s input arguments.

If the argument can be traced back to user-controlled input, the tool flags the execution pathas a
potential command execution vector. If not, the result remains unproven.

The key point here is that the automated flow is not fundamentally different from the manual one.
It is the same process, encoded and enforced programmatically.

Scaling the Analysis

At some point, | needed to validate whether this approach actually worked at scale.

Todothat, | set up a clean Ubuntu 22.04 environment and ran the tool against the entire
/usr/bin directory, which contains roughly a thousand binaries. | launched the analysis
overnight and waited for the results.

N LOLBins Against the Machine

E PENTERA Pentera Labs™ Research Series

The moment of truth came the next morning. | filtered out binaries already documented in
GTFOBins and focused on what remained. What surfaced were binaries that are not currently

listed in the repository, yet exhibited execution paths consistent with LOLBin behavior that
warranted further investigation.

Results of /usr/bin/chrt

rd [r13]', which is

and "rsi’ are loaded from

fically from the

Getting this kind of validation was genuinely exciting. What started as a side research idea

during day-to-day work turned into something tangible: a repeatable process that could surface
interesting results without manual intervention.

12 LOLBins Against the Machine

E PENTERA | Pentera Labs™ Research Series

The Bigger Takeaway

While the findings themselves are interesting, they are not the most important outcome of
this work.

What | found more meaningful is the process behind it: the ability to take existing
knowledge and skills and amplify them through automation and Al. This is not just about
discovering new privilege escalation paths or building another binary analysis tool. It's about
learning how to extend your reach and efficiency by combining technical intuition with Al-
driven reasoning.

If there is one takeaway | hope readers walk away with, it's that this mindset applies far
beyond security research. The tools are already here. What matters is how creatively and
responsibly we choose to use them.

About the author

Matan Abutbul is a Senior Security Researcher with over a decade of experience in
cybersecurity research, penetration testing and incident response.

He's fascinated by how attackers think and operate at the intersection of threat research and
defensive strategy, always exploring new ways to turn threat insights into stronger security.

Reach out to us with any questions about the research at labs@pentera.io.

About Pentera

P

PENTERA

Pentera is the market leader in Al-powered Security Validation, equipping enterprises with the
platform to proactively test all their cybersecurity controls against the latest cyber attacks.
Pentera identifies true risk across the entire attack surface, and automatically orchestrates
remediation workflows to effectively reduce exposure. The company’s security validation
capabilities are essential for Continuous Threat Exposure Management (CTEM) operations.
Thousands of security professionals around the world trust Pentera to close security gaps
before threat actors can exploit them.

For more info, visit: pentera.io

15

LOLBins Against the Machine

https://www.pentera.io/

?‘ PENTERA | Pentera Labs™ Research Series

LOLBIins Against
the Machine

www.Pentera.io | @ in X

https://www.pentera.io/
http://pentera.io?utm_source=Pentera-Labs&source=Pentera-Labs&utm_medium=Research-Article&medium=Research-Article&utm_campaign=WebLogic&campaign=WebLogic
https://www.facebook.com/Penterasec
https://www.linkedin.com/company/penterasecurity/
https://twitter.com/penterasec

